On the asymptotic behaviour of the fractional Sobolev seminorms in metric measure spaces: asymptotic volume ratio, volume entropy and rigidity

We study the asymptotic behaviour of suitably defined seminorms in general metric measure spaces. As a particular case we provide new and shorter proofs of the Maz'ya-Shaposhnikova's theorem on the asymptotic behaviour of the fractional Sobolev $s$-seminorm, in the setting of metric measure spaces and with general mollifiers, as well as of the Ludwig's result on finite dimensional Banach spaces. Our result also provides new spaces satisfying an asymptotic formula and it also builds a link between the asymptotic formula for functions and the asymptotic volume ratio of a metric measure space. In addition, we prove two related rigidity results for metric measure spaces with synthetic Ricci curvature bound which are new even in the smooth setting.

[1]  Wojciech G'orny Bourgain–Brezis–Mironescu Approach in Metric Spaces with Euclidean Tangents , 2020, The Journal of Geometric Analysis.

[2]  A. Cianchi,et al.  Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.

[3]  A. Salort,et al.  Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups , 2019, The Journal of Geometric Analysis.

[4]  A. Pinamonti,et al.  Interpolations and fractional Sobolev spaces in Carnot groups , 2019, Nonlinear Analysis.

[5]  M. Squassina,et al.  Some characterizations of magnetic Sobolev spaces , 2018, Complex Variables and Elliptic Equations.

[6]  Guofang Wei,et al.  Maximal volume entropy rigidity for RCD∗(−(N−1),N) spaces , 2018, Journal of the London Mathematical Society.

[7]  Ali Maalaoui,et al.  Characterizations of anisotropic high order Sobolev spaces , 2018, Asymptot. Anal..

[8]  Olaf Mordhorst,et al.  Fractional Sobolev norms and BV functions on manifolds , 2018, Nonlinear Analysis.

[9]  Daniele Semola,et al.  Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows , 2018, Communications on Pure and Applied Mathematics.

[10]  G. Philippis,et al.  Non-collapsed spaces with Ricci curvature bounded from below , 2017, 1708.02060.

[11]  Davide Barilari,et al.  Sub-Riemannian interpolation inequalities , 2017, Inventiones mathematicae.

[12]  M. Squassina,et al.  The Maz'ya-Shaposhnikova limit in the magnetic setting , 2016, 1610.04127.

[13]  M. Squassina,et al.  Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula , 2016, Advances in Calculus of Variations.

[14]  A. Kristály,et al.  Geometric inequalities on Heisenberg groups , 2016, 1605.06839.

[15]  G. Philippis,et al.  From volume cone to metric cone in the nonsmooth setting , 2015, 1512.03113.

[16]  M. Ludwig Anisotropic fractional Sobolev norms , 2013, 1304.0703.

[17]  Nicola Gigli,et al.  The splitting theorem in non-smooth context , 2013, 1302.5555.

[18]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[19]  Xiping Zhu,et al.  Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.

[20]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[21]  M. Milman Notes on limits of sobolev spaces and the continuity of interpolation scales , 2005 .

[22]  M. Milman,et al.  Limits of higher-order Besov spaces and sharp reiteration theorems , 2005 .

[23]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[24]  Vladimir Maz'ya,et al.  On the Bourgain, Brezis, and Mironescu Theorem Concerning Limiting Embeddings of Fractional Sobolev Spaces , 2003 .

[25]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[26]  A. Manning Topological entropy for geodesic flows , 1979 .

[27]  Katja Gruenewald,et al.  Topics On Analysis In Metric Spaces , 2016 .

[28]  N. Juillet Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .

[29]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[30]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[31]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .