On the asymptotic behaviour of the fractional Sobolev seminorms in metric measure spaces: asymptotic volume ratio, volume entropy and rigidity
暂无分享,去创建一个
[1] Wojciech G'orny. Bourgain–Brezis–Mironescu Approach in Metric Spaces with Euclidean Tangents , 2020, The Journal of Geometric Analysis.
[2] A. Cianchi,et al. Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.
[3] A. Salort,et al. Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups , 2019, The Journal of Geometric Analysis.
[4] A. Pinamonti,et al. Interpolations and fractional Sobolev spaces in Carnot groups , 2019, Nonlinear Analysis.
[5] M. Squassina,et al. Some characterizations of magnetic Sobolev spaces , 2018, Complex Variables and Elliptic Equations.
[6] Guofang Wei,et al. Maximal volume entropy rigidity for RCD∗(−(N−1),N) spaces , 2018, Journal of the London Mathematical Society.
[7] Ali Maalaoui,et al. Characterizations of anisotropic high order Sobolev spaces , 2018, Asymptot. Anal..
[8] Olaf Mordhorst,et al. Fractional Sobolev norms and BV functions on manifolds , 2018, Nonlinear Analysis.
[9] Daniele Semola,et al. Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows , 2018, Communications on Pure and Applied Mathematics.
[10] G. Philippis,et al. Non-collapsed spaces with Ricci curvature bounded from below , 2017, 1708.02060.
[11] Davide Barilari,et al. Sub-Riemannian interpolation inequalities , 2017, Inventiones mathematicae.
[12] M. Squassina,et al. The Maz'ya-Shaposhnikova limit in the magnetic setting , 2016, 1610.04127.
[13] M. Squassina,et al. Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula , 2016, Advances in Calculus of Variations.
[14] A. Kristály,et al. Geometric inequalities on Heisenberg groups , 2016, 1605.06839.
[15] G. Philippis,et al. From volume cone to metric cone in the nonsmooth setting , 2015, 1512.03113.
[16] M. Ludwig. Anisotropic fractional Sobolev norms , 2013, 1304.0703.
[17] Nicola Gigli,et al. The splitting theorem in non-smooth context , 2013, 1302.5555.
[18] L. Ambrosio,et al. Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.
[19] Xiping Zhu,et al. Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.
[20] Shin-ichi Ohta. On the measure contraction property of metric measure spaces , 2007 .
[21] M. Milman. Notes on limits of sobolev spaces and the continuity of interpolation scales , 2005 .
[22] M. Milman,et al. Limits of higher-order Besov spaces and sharp reiteration theorems , 2005 .
[23] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[24] Vladimir Maz'ya,et al. On the Bourgain, Brezis, and Mironescu Theorem Concerning Limiting Embeddings of Fractional Sobolev Spaces , 2003 .
[25] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[26] A. Manning. Topological entropy for geodesic flows , 1979 .
[27] Katja Gruenewald,et al. Topics On Analysis In Metric Spaces , 2016 .
[28] N. Juillet. Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .
[29] Francesco Uguzzoni,et al. Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .
[30] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[31] J. Bourgain,et al. Another look at Sobolev spaces , 2001 .