The Practice of Logical Frameworks

[1]  C. Prehofer Solving higher order equations: from logic to programming , 2012 .

[2]  Frank Pfenning,et al.  A Module System for a Programming Language Based on the LF Logical Framework , 1998, J. Log. Comput..

[3]  Roberto Virga,et al.  Higher-Order Superposition for Dependent Types , 1996, RTA.

[4]  Frank Pfenning,et al.  A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[5]  Frank Pfenning,et al.  Mode and Termination Checking for Higher-Order Logic Programs , 1996, ESOP.

[6]  John Hatcliff,et al.  Mechanically Verifying the Correctness of an Offline Partial Evaluator , 1995, PLILP.

[7]  Jawahar Chirimar Proof theoretic approach to specification languages , 1995 .

[8]  Frank Pfenning,et al.  Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[9]  Amy P. Felty,et al.  Higher-Order Abstract Syntax in Coq , 1995, TLCA.

[10]  Helmut Schwichtenberg,et al.  Strict Functionals for Termination Proofs , 1995, TLCA.

[11]  Robert Pollack,et al.  A Verified Typechecker , 1995, TLCA.

[12]  Luca Roversi,et al.  Categorical semantics of the call-by-value lambda-calculus , 1995, TLCA.

[13]  Stefan Kahrs,et al.  Towards a Domain Theory for Termination Proofs , 1995, RTA.

[14]  Olav Lysne,et al.  A Termination Ordering for Higher Order Rewrite System , 1995, RTA.

[15]  Wolfgang Gehrke Problems in Rewriting Applied to Categorical Concepts by the Example of a Computational Comonad , 1995, RTA.

[16]  Olivier Danvy,et al.  The Occurrence of Continuation Parameters in CPS Terms , 1995 .

[17]  Manfred Broy,et al.  Interpreter Verification for a Functional Language , 1994, FSTTCS.

[18]  Marianne Haberstrau,et al.  ECOLOG: an Environment for COnstraint LOGics , 1994, CCL.

[19]  Jürgen Avenhaus,et al.  Higher Order Conditional Rewriting and Narrowing , 1994, CCL.

[20]  André Hirschowitz,et al.  Higher-Order Abstract Syntax with Induction in Coq , 1994, LPAR.

[21]  Penny Anderson,et al.  Program Extraction in a Logical Framework Setting , 1994, LPAR.

[22]  Dominic Duggan,et al.  Logical Closures , 1994, LPAR.

[23]  Dale Miller,et al.  A multiple-conclusion meta-logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[24]  Gérard Huet,et al.  Residual theory in λ-calculus: a formal development , 1994, Journal of Functional Programming.

[25]  Frank Pfenning,et al.  Elf: A Meta-Language for Deductive Systems (System Descrition) , 1994, CADE.

[26]  Penny Anderson,et al.  Representing Proof Transformations for Program Optimizations , 1994, CADE.

[27]  Lars-Henrik Eriksson,et al.  Pi: an Interactive Derivation Editor for the Calculus of Partial Inductive Definitions , 1994, CADE.

[28]  Amy P. Felty,et al.  Tactic Theorem Proving with Refinement-Tree Proofs and Metavariables , 1994, CADE.

[29]  Robert Harper,et al.  Structured Theory Presentations and Logic Representations , 1994, Ann. Pure Appl. Log..

[30]  Dov M. Gabbay,et al.  Classical vs non-classical logics (the universality of classical logic) , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.

[31]  Bengt Nordström,et al.  The ALF Proof Editor and Its Proof Engine , 1994, TYPES.

[32]  Frank Pfenning,et al.  Unification in a l-calculus with intersection types , 1993, ICLP 1993.

[33]  Robert L. Constable,et al.  Metalogical frameworks , 1993 .

[34]  Alan Smaill,et al.  Experience with FS 10 0 as a framework theory , 1993 .

[35]  Zhenyu Qian,et al.  Linear Unification of Higher-Order Patterns , 1993, TAPSOFT.

[36]  John Hannan,et al.  Extended natural semantics , 1993, Journal of Functional Programming.

[37]  Lars-Henrik Eriksson,et al.  Finitary Partial Inductive Definitions as a General Logic , 1993, ELP.

[38]  Jan Friso Groote,et al.  Proceedings of the International Conference on Typed Lambda Calculi and Applications , 1993 .

[39]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[40]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[41]  David J. Pym,et al.  A Unification Algorithm for the lambda-Pi-Calculus , 1992, Int. J. Found. Comput. Sci..

[42]  Frank Pfenning,et al.  A Proof of the Church-Rosser Theorem and its Representation in a Logical Framework , 1992 .

[43]  Dominique Méry,et al.  Crocos: An Integrated Environment for Interactive Verification of SDL Specifications , 1992, CAV.

[44]  John Hannan,et al.  Compiler verification in LF , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[45]  Frank Pfenning,et al.  Implementing the Meta-Theory of Deductive Systems , 1992, CADE.

[46]  Tobias Nipkow,et al.  Isabelle-91 , 1992, CADE.

[47]  Frank Pfenning,et al.  Types in Logic Programming , 1992, ICLP.

[48]  Frank Pfenning,et al.  Natural Semantics and Some of Its Meta-Theory in Elf , 1992, ELP.

[49]  F. Pfenning Logic programming in the LF logical framework , 1991 .

[50]  P. Schroeder-Heister Structural frameworks, substructural logics, and the role of elimination inferences , 1991 .

[51]  Lars Hallnäs,et al.  Partial Inductive Definitions , 1991, Theor. Comput. Sci..

[52]  Frank Pfenning,et al.  Unification and anti-unification in the calculus of constructions , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[53]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[54]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[55]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[56]  Amy P. Felty,et al.  A Logic Programming Approach to Implementing Higher-Order Term Rewriting , 1991, ELP.

[57]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[58]  David J. Pym,et al.  Investigations into Proof-Search in a System of First-Order Dependent Function Types , 1990, CADE.

[59]  Dale Miller,et al.  From operational semantics to abstract machines: preliminary results , 1990, LISP and Functional Programming.

[60]  Tobias Nipkow,et al.  Equational Reasoning in Isabelle , 1989, Sci. Comput. Program..

[61]  Frank Pfenning,et al.  Elf: a language for logic definition and verified metaprogramming , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[62]  Robert L. Constable,et al.  Nuprl as a General Logic , 1989 .

[63]  Natarajan Shankar,et al.  A mechanical proof of the Church-Rosser theorem , 1988, JACM.

[64]  Frank Pfenning,et al.  Higher-order abstract syntax , 1988, PLDI '88.

[65]  Amy P. Felty,et al.  Specifying Theorem Provers in a Higher-Order Logic Programming Language , 1988, CADE.

[66]  Frank Pfenning,et al.  Partial polymorphic type inference and higher-order unification , 1988, LISP and Functional Programming.

[67]  Lawrence C. Paulson,et al.  Natural Deduction as Higher-Order Resolution , 1986, J. Log. Program..

[68]  Douglas J. Howe,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[69]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[70]  Clarence S. McIntire Hafner Award to Dr. John Price , 1864, The Biblical World.

[71]  Christian Prehofer,et al.  Solving Higher-Order Equations , 1998, Progress in Theoretical Computer Science.

[72]  Narciso Martí-Oliet,et al.  Rewriting Logic as a Logical and Semantic Framework , 1996 .

[73]  P. Martin-Löf On the meanings of the logical constants and the justi cations of the logical laws , 1996 .

[74]  Robert L. Constable,et al.  Using Reflection to Explain and Enhance Type Theory , 1995 .

[75]  Ole Rasmussen,et al.  The Church-Rosser Theorem in Isabelle: A Proof Porting Experiment , 1995 .

[76]  D. Gabbay LDS - Labelled Deductive Systems: Volume 1 - Foundations , 1994 .

[77]  R. Pollack The Theory of LEGO A Proof Checker for the Extended Calculus of Constructions , 1994 .

[78]  Lena Magnusson,et al.  The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .

[79]  Thierry Coquand,et al.  Type Theorie Programming , 1994, Bull. EATCS.

[80]  T. Nipkow,et al.  Interpreter Veriication for a Functional Language , 1994 .

[81]  P. Anderson Representing proof transformations for program optimization , 1994 .

[82]  van Ls Bert Benthem Jutting,et al.  Checking Landau's “Grundlagen” in the Automath System: Appendices 3 and 4 (The PN-lines; Excerpt for “Satz 27”) , 1994 .

[83]  Frank Pfenning,et al.  Logic Programming and Automated Reasoning , 1994, Lecture Notes in Computer Science.

[84]  Frank Pfenning,et al.  Higher-Order Logic Programming as Constraint Logic Programming , 1993, PPCP.

[85]  Claude Kirchner,et al.  Implementing Computational Systems with Constraints , 1993, PPCP.

[86]  Penny Anderson,et al.  Program derivation by proof transformation , 1993 .

[87]  Frank Pfenning,et al.  An Empirical Study of the Runtime Behavior of Higher-Order Logic Programs , 1992 .

[88]  Frank Pfenning,et al.  Dependent Types in Logic Programming , 1992, Types in Logic Programming.

[89]  Philippa Gardner,et al.  Representing logics in type theory , 1992 .

[90]  Forbes AvenuePittsburgh,et al.  Compiler Veriication in Lf , 1992 .

[91]  Frank Pfenning,et al.  Uniication and Anti-uniication in the Calculus of Constructions , 1991 .

[92]  David J. Pym,et al.  Proofs, search and computation in general logic , 1990 .

[93]  Conal Elliott Extensions and applications of higher-order unification , 1990 .

[94]  Amy P. Felty,et al.  The Coq proof assistant user's guide : version 5.6 , 1990 .

[95]  Conal Elliott,et al.  Higher-order Unification with Dependent Function Types , 1989, RTA.

[96]  Amy P. Felty,et al.  Specifying and implementing theorem provers in a higher-order logic programming language , 1989 .

[97]  Gopalan Nadathur,et al.  Towards a WAM model for ?Prolog , 1989 .

[98]  Dale A. Miller,et al.  AN OVERVIEW OF PROLOG , 1988 .

[99]  Lawrence Charles Paulson Tactics and tacticals in Cambridge LCF , 1983 .

[100]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[101]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .