Two‐dimensional inversion of direct current resistivity data using a parallel, multi‐objective genetic algorithm

SUMMARY We introduce the concept of multi-objective optimization to cast the regularized inverse direct current resistivity problem into a general formulation. This formulation is suitable for the efficient application of a genetic algorithm, which is known as a global and non-linear optimization tool. The genetic inverse algorithm generates a set of solutions reflecting the trade-off between data misfit and some measure of model features. Examination of such an ensemble is highly preferable to classical approaches where just one ‘optimal’ solution is examined since a better overview over the range of possible inverse models is gained. However, the computational cost to obtain this ensemble is enormous. We demonstrate that at the current state of computer performance inversion of 2-D direct current resistivity data using genetic algorithms is possible if state-of-the-art computational techniques such as parallelization and efficient 2-D forward operators are applied.

[1]  Yuguo Li,et al.  Three‐dimensional DC resistivity forward modelling using finite elements in comparison with finite‐difference solutions , 2002 .

[2]  Kris Vasudevan,et al.  APPLICATION OF THE GENETIC ALGORITHM TO RESIDUAL STATICS ESTIMATION , 1991 .

[3]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[4]  Matthew J. Yedlin,et al.  Some refinements on the finite-difference method for 3-D dc resistivity modeling , 1996 .

[5]  Guy Drijkoningen,et al.  Genetic algorithms : an evolution from Monte Carlo methods for strongly non-linear geophysical optimization problems , 1991 .

[6]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[7]  M. Everett,et al.  Two-Dimensional Nonlinear Magnetotelluric Inversion Using a Genetic Algorithm , 1993 .

[8]  Peter N. Shive,et al.  Singularity removal: A refinement of resistivity modeling techniques , 1989 .

[9]  E. Mundry GEOELECTRICAL MODEL CALCULATIONS FOR TWO‐DIMENSIONAL RESISTIVITY DISTRIBUTIONS* , 1984 .

[10]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[11]  K. Spitzer A 3-D FINITE-DIFFERENCE ALGORITHM FOR DC RESISTIVITY MODELLING USING CONJUGATE GRADIENT METHODS , 1995 .

[12]  B. Kennett,et al.  Earthquake location genetic algorithms for teleseisms , 1992 .

[13]  Malcolm Sambridge,et al.  Genetic algorithms: a powerful tool for large-scale nonlinear optimization problems , 1994 .

[14]  Mrinal K. Sen,et al.  Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms , 1991 .

[15]  D. Oldenburg,et al.  A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Mrinal K. Sen,et al.  Hybrid optimization methods for geophysical inversion , 1997 .

[18]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.

[19]  A. Dey,et al.  Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .

[20]  Roel Snieder,et al.  The Anatomy of Inverse Problems , 2000 .

[21]  Darrell Whitley,et al.  Examining the role of local optima and schema processing in genetic search , 1999 .

[22]  T. Günther Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements , 2004 .

[23]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[24]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[25]  Mrinal K. Sen,et al.  2-D resistivity inversion using spline parameterization and simulated annealing , 1996 .

[26]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[27]  M. A. Pérez-Flores,et al.  Application of 2-D inversion with genetic algorithms to magnetotelluric data from geothermal areas , 2002 .

[28]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[29]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[30]  Mrinal K. Sen,et al.  Nonlinear inversion of resistivity sounding data , 1993 .

[31]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[32]  Mike Dentith,et al.  Inversion of potential field data by genetic algorithms , 1997 .

[33]  S. Friedel,et al.  Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach , 2003 .

[34]  Stephen K. Park,et al.  Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes , 1991 .

[35]  Mrinal K. Sen,et al.  Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion , 1992 .

[36]  Kalyanmoy Deb,et al.  Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms , 2003 .

[37]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[38]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[39]  Jie Zhang,et al.  3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .