Directional-Layered Space-Time Densities: A New Spatiotemporal Trajectory Aggregation and Geographic Visualization Approach

One approach used in GIScience to investigate movement data is adopting time-geography theory and its important principles/methods: space-time paths and space-time cube. Thus, the movement of a moving object can be represented as a 3D polyline in a space-time cube. However, with the advent of larger movement datasets, this type of display can easily become cluttered and incomprehensible. In this article, we propose a new space-time aggregation algorithm, i.e., directional-layered space-time densities (DLSTDs), to solve the problem of trajectory clutter in a space-time cube. The approach is an extension of the pixel (2D raster cell) density around a point in two-dimensional space to the voxel density around a trajectory line segment in three-dimensional space-time $(x-y+t)$ . In the algorithm, the horizontal or vertical voxel layers are first calculated around the trajectory based on the direction of each trajectory line segment. Subsequently, the voxel density is calculated by substituting the distance of the voxel from the trajectory segment into a Gaussian-based attenuation function. Finally, the resulting layered densities are presented using volume rendering techniques. We demonstrate the DLSTDs on 30-day movement data of transport trucks in a mine in China and compare the algorithm with two other algorithms. At the end of the article, we summarize the research and consider further developments of the proposed approach.

[1]  Ai Tinghua,et al.  The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation , 2015 .

[2]  Otto Huisman,et al.  Beyond exploratory visualization of space time paths , 2009 .

[3]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[4]  Yijin Chen,et al.  4D Time Density of Trajectories: Discovering Spatiotemporal Patterns in Movement Data , 2018, ISPRS Int. J. Geo Inf..

[5]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Jing He,et al.  Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated , 2019, IEEE Access.

[7]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[8]  Claes Wohlin,et al.  Software inspection benchmarking-a qualitative and quantitative comparative opportunity , 2002, Proceedings Eighth IEEE Symposium on Software Metrics.

[9]  Diansheng Guo,et al.  Quantifying Animal Trajectories Using Spatial Aggregation and Sequence Analysis: A Case Study of Differentiating Trajectories of Multiple Species , 2016 .

[10]  Helwig Hauser,et al.  Visualization of Multi‐Variate Scientific Data , 2009, Comput. Graph. Forum.

[11]  Judy Shamoun-Baranes,et al.  Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time , 2014, GeoInformatica.

[12]  Camilla Forsell,et al.  2D and 3D Representations for Feature Recognition in Time Geographical Diary Data , 2010, Inf. Vis..

[13]  Youngok Kang,et al.  Space-time density of field trip trajectory: exploring spatio-temporal patterns in movement data , 2017, Spatial Information Research.

[14]  Bei Wang,et al.  Geometric Inference on Kernel Density Estimates , 2013, SoCG.

[15]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[16]  J. Pu,et al.  Survey on visualization of trajectory data , 2012 .

[17]  Tung-Ju Hsieh,et al.  Visualizing the Seismic Spectral Response of the 1999 Chi-Chi Earthquake Using Volume Rendering Technique , 2012 .

[18]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[19]  Diansheng Guo,et al.  Origin-Destination Flow Data Smoothing and Mapping , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Xinming Tang,et al.  Diverse Visualization Techniques and Methods of Moving-Object-Trajectory Data: A Review , 2019, ISPRS Int. J. Geo Inf..

[21]  Wu Fang,et al.  Overview of the Research Progress in Automated Map Generalization , 2017 .

[22]  Song Gao,et al.  Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age , 2015, Spatial Cogn. Comput..

[23]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[24]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[25]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[26]  Xiaonan Luo,et al.  A Graph-Based Visual Query Method for Massive Human Trajectory Data , 2019, IEEE Access.

[27]  Tomoki Nakaya,et al.  Analytical Data Transformations in Space–Time Region: Three Stories of Space–Time Cube , 2013 .

[28]  Zhongliang Fu,et al.  Mining Frequent Route Patterns Based on Personal Trajectory Abstraction , 2017, IEEE Access.

[29]  Mark W. Horner,et al.  Analysing infrequently sampled animal tracking data by incorporating generalized movement trajectories with kernel density estimation , 2012, Comput. Environ. Urban Syst..

[30]  Qian Haizhong,et al.  Cartographic-generalization-knowledge and Its Application , 2006 .

[31]  Willem Bouten,et al.  Geostatistical analysis of GPS trajectory data: Space-time densities , 2008 .

[32]  Gary Higgs,et al.  Visualising space and time in crime patterns: A comparison of methods , 2007, Comput. Environ. Urban Syst..

[33]  Yu Huang,et al.  Trajectory compression-guided visualization of spatio-temporal AIS vessel density , 2016, 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).

[34]  Peng Gao,et al.  Discovering Spatial Patterns in Origin‐Destination Mobility Data , 2012, Trans. GIS.

[35]  Terry A. Slocum,et al.  Thematic cartography and geovisualization, 3rd Edition , 2008 .

[36]  Jeremy L. Mennis Multidimensional Map Algebra: Design and Implementation of a Spatio-Temporal GIS Processing Language , 2010, Trans. GIS.

[37]  Menno-Jan Kraak,et al.  Geovisualization illustrated , 2002 .

[38]  R. Ahas,et al.  Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data , 2010 .

[39]  Ryan Wen Liu,et al.  Maritime Traffic Data Visualization: A Brief Review , 2019, 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA).

[40]  Jianhua Gong,et al.  Visualizing and analyzing dynamic meteorological data with virtual globes: A case study of tropical cyclones , 2015, Environ. Model. Softw..

[41]  Ross Maciejewski,et al.  Visual Analytics of Mobility and Transportation: State of the Art and Further Research Directions , 2017, IEEE Transactions on Intelligent Transportation Systems.

[42]  Cláudio T. Silva,et al.  Direct Volume Rendering: A 3D Plotting Technique for Scientific Data , 2008, Computing in Science & Engineering.