A Superconvergent Monte Carlo Method for Multiple Integrals on the Grid
暂无分享,去创建一个
[1] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[2] Ivan Tomov Dimov,et al. A New Quasi-Monte Carlo Algorithm for Numerical Integration of Smooth Functions , 2003, LSSC.
[3] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[4] P. Deuflhard,et al. Large Scale Scientific Computing , 1987 .
[5] G. Marchuk,et al. Numerical methods and applications , 1995 .
[6] Michael Mascagni. SPRNG: A Scalable Library for Pseudorandom Number Generation , 1999, PPSC.
[7] Rayna Georgieva,et al. Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals , 2002, Numerical Methods and Application.
[8] Emanouil I. Atanassov,et al. Generating and Testing the Modified Halton Sequences , 2002, Numerical Methods and Application.
[9] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[10] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[11] Emanouil I. Atanassov. Measuring the Performance of a Power PC Cluster , 2002, International Conference on Computational Science.
[12] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[13] Jack Dongarra,et al. Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.