Degradation study of La0.6Sr0.4Co1–Fe O3–δ based symmetric cells by means of impedance spectroscopy and oxygen isotope exchange

[1]  Anatoli I. Popov,et al.  Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals , 2022, Crystals.

[2]  P. D. Lund,et al.  A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools , 2022, Renewable and Sustainable Energy Reviews.

[3]  V. A. Eremin,et al.  Revealing the degradation mechanism of the lanthanum nickelates based double‐layer electrodes during long‐term tests in contact with chromium‐containing steel interconnects , 2022, International Journal of Energy Research.

[4]  Xitao Wang,et al.  Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells , 2021, npj Computational Materials.

[5]  K. Yamaji,et al.  Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities , 2021, Nature communications.

[6]  G. Caboche,et al.  Chemical Degradation of the La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Sm0.2O2−δ Interface during Sintering and Cell Operation , 2021, Energies.

[7]  A. Farlenkov,et al.  Effect of grain boundaries in La0.84Sr0.16CoO3-δ on oxygen diffusivity and surface exchange kinetics. , 2021, Physical chemistry chemical physics : PCCP.

[8]  E. Siebert,et al.  An Elementary Kinetic Model for the LSCF and LSCF-CGO Electrodes of Solid Oxide Cells: Impact of Operating Conditions and Degradation on the Electrode Response , 2021 .

[9]  V. A. Eremin,et al.  Interaction of O2 with LSM–YSZ Composite Materials and Oxygen Spillover Effect , 2021 .

[10]  D. Osinkin,et al.  Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6-δ promising electrode for solid state electrochemical devices , 2021 .

[11]  H. Fritze,et al.  Linking the Electrical Conductivity and Non-Stoichiometry of Thin Film Ce1−xZrxO2−δ by a Resonant Nanobalance Approach , 2021, Materials.

[12]  Anatoli I. Popov,et al.  Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies , 2020, Low Temperature Physics.

[13]  D. Osinkin,et al.  LaScO3-based electrolyte for protonic ceramic fuel cells: Influence of sintering additives on the transport properties and electrochemical performance , 2020 .

[14]  V. A. Eremin,et al.  Oxygen surface exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. , 2020, Physical chemistry chemical physics : PCCP.

[15]  D. Osinkin,et al.  Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ , 2020 .

[16]  V. A. Eremin,et al.  Formation of Conductive Oxide Scale on 33NK and 47ND Interconnector Alloys for Solid Oxide Fuel Cells , 2019, Energies.

[17]  E. Kurumchin,et al.  Influence of strontium content on the oxygen surface exchange kinetics and oxygen diffusion in La1–Sr CoO3–δ oxides , 2019, Solid State Ionics.

[18]  S. Akkurt,et al.  Fabrication of LSCF and LSCF-GDC nanocomposite thin films using polymeric precursors , 2019, Ionics.

[19]  Yong Du,et al.  Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: Experimental investigation and kinetic modeling , 2019, Journal of Power Sources.

[20]  K. Lee,et al.  Correlation of Time-Dependent Oxygen Surface Exchange Kinetics with Surface Chemistry of La0.6Sr0.4Co0.2Fe0.8O3- Catalysts. , 2019, ACS applied materials & interfaces.

[21]  T. Matsui,et al.  Degradation Analysis of Solid Oxide Fuel Cells with (La,Sr)(Co,Fe)O3-δ Cathode/Gd2O3–CeO2 Interlayer/Y2O3–ZrO2 Electrolyte System: The Influences of Microstructural Change and Solid Solution Formation , 2019, ECS Transactions.

[22]  R. Nascimento,et al.  Cathodic polarisation of composite LSCF-SDC IT-SOFC electrode synthesised by one-step microwave self-assisted combustion , 2019, Journal of the European Ceramic Society.

[23]  A. Farlenkov,et al.  EIS analysis of electrode kinetics for La2NiO4 + δ cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: from DRT analysis to physical model of the electrochemical process , 2019, Journal of Solid State Electrochemistry.

[24]  S. Jiang,et al.  Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review , 2019, International Journal of Hydrogen Energy.

[25]  M. Ananyev,et al.  Oxygen isotope exchange with La0.6Sr0.4Co1−yFeyO3−δ (y = 0.0, 0.2) oxides , 2019, Integrated Ferroelectrics.

[26]  A. Farlenkov,et al.  Oxygen diffusion and surface exchange kinetics for the mixed-conducting oxide La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ , 2018 .

[27]  E. R. Losilla,et al.  Durability and performance of CGO barriers and LSCF cathode deposited by spray-pyrolysis , 2018, Journal of the European Ceramic Society.

[28]  M. Cassidy,et al.  Tailoring SOFC Electrode Microstructures for Improved Performance , 2018, Advanced Energy Materials.

[29]  A. Tarancón,et al.  Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells , 2018 .

[30]  V. A. Eremin,et al.  Protective Coatings La–Mn–Cu–O for Stainless-Steel Interconnector 08Х17Т for SOFC, Obtained by the Electrocrystallization Method from Non-Aqueous Solutions , 2018, Russian Journal of Non-Ferrous Metals.

[31]  S. Barnett,et al.  Degradation mechanisms of porous La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O3-δ solid oxide fuel cell cathodes , 2018 .

[32]  R. Tomov,et al.  Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration , 2017, Journal of Applied Electrochemistry.

[33]  N. Menzler,et al.  Formation of chromium containing impurities in (La,Sr)MnO3 solid-oxide-fuel-cell cathodes under stack operating conditions and its effect on performance , 2016 .

[34]  K. Yamaji,et al.  Effect of La0.6Sr0.4Co0.2Fe0.8O3-δ microstructure on oxygen surface exchange kinetics , 2016 .

[35]  V. A. Eremin,et al.  Oxygen isotope exchange in La2NiO(4±δ). , 2016, Physical chemistry chemical physics : PCCP.

[36]  D. Lamas,et al.  Performance of La0.6Sr0.4Co1−yFeyO3 (y=0.2, 0.5 and 0.8) nanostructured cathodes for intermediate-temperature solid-oxide fuel cells: Influence of microstructure and composition , 2016 .

[37]  S. Barnett,et al.  Mechanisms of Performance Degradation of (La,Sr)(Co,Fe)O3-δ Solid Oxide Fuel Cell Cathodes , 2016 .

[38]  T. Ishihara,et al.  Oxygen exchange and transport in dual phase ceramic composite electrodes. , 2015, Faraday discussions.

[39]  V. A. Eremin,et al.  Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis , 2015 .

[40]  P. Möller,et al.  Mobilty of Sr in Gadolinia Doped Ceria SOFC Chemical Barrier Layers Prepared Using Spray Pyrolysis, Pulsed Laser Deposition and Magnetron Sputtering Methods , 2015 .

[41]  V. A. Eremin,et al.  Particle Coarsening Influence on Oxygen Reduction in LSM–YSZ Composite Materials , 2015 .

[42]  V. A. Eremin,et al.  Oxygen isotope exchange in the LSM-YSZ composite under the conditions of long-term tests , 2014, Russian Journal of Electrochemistry.

[43]  D. Bronin,et al.  Polarization resistance of platinum electrodes in contact with proton-conducting La0.9Sr0.1613-1 , 2014, Russian Journal of Electrochemistry.

[44]  Mina Nishi,et al.  Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs) , 2014 .

[45]  J. Bernardi,et al.  Cation diffusion in La(0.6)Sr(0.4)CoO(3-δ) below 800 °C and its relevance for Sr segregation. , 2014, Physical chemistry chemical physics : PCCP.

[46]  Zhuoying Zhu,et al.  Electrical conductivity relaxation of Sr2Fe1.5Mo0.5O6−δ–Sm0.2Ce0.8O1.9 dual-phase composites , 2014 .

[47]  W. Bessler,et al.  Impedance of the Surface Double Layer of LSCF/CGO Composite Cathodes: An Elementary Kinetic Model , 2014 .

[48]  R. Lunt,et al.  In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method , 2013 .

[49]  Olivier Bucheli,et al.  Development and Manufacturing of SOFC-Based Products at SOFCpower SpA , 2013 .

[50]  G. Vdovin,et al.  Kinetics of interaction of gas phase oxygen with cerium-gadolinium oxide , 2012, Russian Journal of Electrochemistry.

[51]  A. Gavrilyuk,et al.  Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium manganites , 2012, Russian Journal of Electrochemistry.

[52]  L. M. Rodriguez-Martinez,et al.  Stability of ferritic perovskite cathodes in anode-supported solid oxide fuel cells under different processing and operation parameters , 2011 .

[53]  D. Osinkin,et al.  Single solid-oxide fuel cells with supporting ni-cermet anode , 2011 .

[54]  E. Kurumchin,et al.  Effect of defect structure of lanthanum manganite on oxygen exchange kinetics and diffusion , 2011 .

[55]  E. Stach,et al.  Crystallization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3 − δ-Ce0.8Gd0.2O1.9 thin film cathodes processed by single solution spray pyrolysis , 2011 .

[56]  T. Jacobsen,et al.  Impedance of porous IT-SOFC LSCF:CGO composite cathodes , 2011 .

[57]  J. Irvine,et al.  Red-ox behaviour in the La0.6Sr0.4CoO3±δ-CeO2 system , 2011 .

[58]  K. Yamaji,et al.  Interfacial stability and cation diffusion across the LSCF/GDC interface , 2011 .

[59]  N. Uvarov,et al.  The effect of phase composition on the transport properties of composites La0.8Sr0.2Fe0.7Ni0.3O3 − δ-Ce0.9Gd0.1O1.95 , 2011 .

[60]  Boris Iwanschitz,et al.  Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres , 2011 .

[61]  E. Ivers-Tiffée,et al.  Oxygen Surface Exchange and Bulk Diffusion Coefficients Evaluated from Porous Mixed Ionic-Electronic Conducting Cathodes , 2010 .

[62]  D. Bronin,et al.  Options for adjustment of microstructure and conductivity of cathodic substrates of La(Sr)MnO3 , 2010 .

[63]  E. Kurumchin,et al.  Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites , 2010 .

[64]  Francesco De Carlo,et al.  Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode , 2010 .

[65]  M. J. Pawar,et al.  Effect of Co Co-Doping on the Densification and Electrical Conductivity of Ce 0 . 9 Sm 0 . 1 O 2-δ Solid Electrolytes , 2010 .

[66]  Jian Xin Wang,et al.  SOFC Powders and Unit Cell Research at NIMTE , 2009 .

[67]  B. Münch,et al.  Toward Reproducible Three-Dimensional Microstructure Analysis of Granular Materials and Complex Suspensions , 2009, Microscopy and Microanalysis.

[68]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[69]  S. Chan,et al.  Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte , 2008 .

[70]  N. Sakai,et al.  Degradation Behavior at Interface of LSCF Cathodes and Rare Earth Doped Ceria , 2007 .

[71]  Ludwig J. Gauckler,et al.  Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis , 2007 .

[72]  L. Singheiser,et al.  Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings , 2007 .

[73]  Robert J. Flatt,et al.  FIB-Nanotomography of Particulate Systems—Part II: Particle Recognition and Effect of Boundary Truncation , 2006 .

[74]  S. Jiang,et al.  Deposition of Cr Species at ( La , Sr ) ( Co , Fe ) O3 Cathodes of Solid Oxide Fuel Cells , 2006 .

[75]  J. Kilner,et al.  Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)–La0.8Sr0.2MnO3±δ (LSM) composites , 2005 .

[76]  Jürgen Fleig,et al.  The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry , 2004 .

[77]  M. Watanabe,et al.  HIGH PERFORMANCE ELECTRODE FOR MEDIUM-TEMPERATURE SOLID OXIDE FUEL CELLS LA(SR)COO3 CATHODE WITH CERIA INTERLAYER ON ZIRCONIA ELECTROLYTE , 1999 .

[78]  John A. Kilner,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ , 1999 .

[79]  P. Levitz,et al.  Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport , 1998 .

[80]  M. Lankhorst,et al.  Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ , 1997 .

[81]  J. Kilner,et al.  Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure , 1996 .

[82]  P. Levitz,et al.  Three-dimensional analysis of a loamy-clay soil using pore and solid chord distributions , 1996 .

[83]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[84]  K. Kishio,et al.  Diffusion of oxide ion vacancies in perovskite-type oxides , 1988 .

[85]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[86]  G. K. Boreskov,et al.  Kinetics of exchange and species of oxygen on the surface of oxide catalysts , 1974 .

[87]  G. I. Panov,et al.  Determination of rate of heteroexchange in the system molecular oxygen-solid oxide , 1969 .