Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators

We present new results from our test of Lorentz invariance, which compares two orthogonal cryogenic sapphire microwave oscillators rotating in the lab. We have now acquired over 1 year of data, allowing us to avoid the short data set approximation (less than 1 year) that assumes no cancellation occurs between the {kappa}-tilde{sub e-} and {kappa}-tilde{sub o+} parameters from the photon sector of the standard model extension. Thus, we are able to place independent limits on all eight {kappa}-tilde{sub e-} and {kappa}-tilde{sub o+} parameters. Our result represents up to a factor of 10 improvement over previous nonrotating measurements (which independently constrained seven parameters) and is a slight improvement (except for {kappa}-tilde{sub e-}{sup ZZ}) over results from previous rotating experiments that assumed the short data set approximation. Also, an analysis in the Robertson-Mansouri-Sexl framework allows us to place a new limit on the isotropy parameter P{sub MM}={delta}-{beta}+(1/2) of 9.4(8.1)x10{sup -11}, an improvement of a factor of 2.

[1]  New limit on signals of Lorentz violation in electrodynamics. , 2003, Physical review letters.

[2]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.

[3]  A. Kostelecký Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.

[4]  Michael E. Tobar,et al.  Whispering Gallery Resonators and Tests of Lorentz Invariance , 2004 .

[5]  Wei-Tou Ni,et al.  Equivalence Principles and Electromagnetism , 1977 .

[6]  Michael E. Tobar,et al.  Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators , 1991 .

[7]  Michael E. Tobar,et al.  Improved test of Lorentz invariance in electrodynamics , 2004, hep-ph/0407232.

[8]  Achim Peters,et al.  Modern Michelson-Morley experiment using cryogenic optical resonators. , 2003, Physical review letters.

[9]  Alan Kostelecky,et al.  Lorentz-Violating Extension of the Standard Model , 1998 .

[10]  A. Kostelecký,et al.  Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.

[11]  P. Antonini,et al.  Test of constancy of speed of light with rotating cryogenic optical resonators , 2005 .

[12]  A. Michelson,et al.  On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.

[13]  S. Reinhardt,et al.  Improved test of time dilation in special relativity. , 2003, Physical review letters.

[14]  Edward M. Thorndike,et al.  Experimental Establishment of the Relativity of Time , 1932 .

[15]  H. P. Robertson Postulate versus Observation in the Special Theory of Relativity , 1949 .

[16]  David Blair,et al.  A very high stability sapphire loaded superconducting cavity oscillator , 1990 .

[17]  Achim Peters,et al.  Test of the isotropy of the speed of light using a continuously rotating optical resonator. , 2005, Physical review letters.

[18]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[19]  A. Brillet,et al.  Improved Laser Test of the Isotropy of Space , 1979 .

[20]  Mohamad Susli,et al.  Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators. , 2005, Physical review letters.

[21]  Herbert E. Ives,et al.  An Experimental Study of the Rate of a Moving Atomic Clock , 1938 .

[22]  R. Sexl,et al.  A test theory of special relativity: I. Simultaneity and clock synchronization , 1977 .

[23]  Optical cavity tests of Lorentz invariance for the electron , 2003, hep-ph/0401016.

[24]  A. Lightman,et al.  Restricted Proof that the Weak Equivalence Principle Implies the Einstein Equivalence Principle , 1973 .