Na3VAs2 monolayer: A two-dimensional intrinsic room-temperature ferromagnetic half-metal with large desired perpendicular magnetic anisotropy

[1]  Chunlan Ma,et al.  Doping- and strain-tuned high Curie temperature half-metallicity and quantum anomalous Hall effect in monolayer NiAl2S4 with non-Dirac and Dirac states , 2023, Physical Review B.

[2]  Fei Li,et al.  Prediction of monolayer FeP4 with intrinsic half-metal ferrimagnetism above room temperature , 2023, Physical Review B.

[3]  Yuerui Lu,et al.  Enhanced Room Temperature Ferromagnetism in Highly Strained 2D Semiconductor Cr2Ge2Te6. , 2022, ACS nano.

[4]  Xiuyun Zhang,et al.  TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal , 2022, Applied Physics Letters.

[5]  Haixin Chang,et al.  Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy , 2022, Nature Communications.

[6]  Bin Wang,et al.  Cr2XTe4 (X = Si, Ge) monolayers: a new type of two-dimensional high-T C Ising ferromagnetic semiconductors with a large magnetic anisotropy , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Maoshuai He,et al.  Two-dimensional transition metal triborides: Monolayers with robust intrinsic magnetism and high spin stability , 2022, Physical Review B.

[8]  S. Dong,et al.  Structural reconstruction and anisotropic conductance in 4f-ferromagnetic monolayer , 2022, Materials Today Physics.

[9]  M. Kanatzidis,et al.  Thermoelectric Performance of the 2D Bi2Si2Te6 Semiconductor. , 2022, Journal of the American Chemical Society.

[10]  Zhenxiang Cheng,et al.  Ni(NCS)2 monolayer: a robust bipolar magnetic semiconductor. , 2021, Nanoscale.

[11]  G. Qin,et al.  Two-dimensional ferromagnetic semiconductors of rare-earth monolayer GdX2 (X = Cl, Br, I) with large perpendicular magnetic anisotropy and high Curie temperature , 2021, Materials Today Physics.

[12]  Jinlan Wang,et al.  A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature , 2021 .

[13]  Yungeng Zhang,et al.  B2S3 monolayer: a two-dimensional direct-gap semiconductor with tunable band-gap and high carrier mobility , 2021, Nanotechnology.

[14]  C. Nuckolls,et al.  Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. , 2020, Nano letters.

[15]  Lingling Wang,et al.  Two-dimensional hexagonal chromium chalco-halides with large vertical piezoelectricity, high-temperature ferromagnetism, and high magnetic anisotropy. , 2020, Physical chemistry chemical physics : PCCP.

[16]  Xiaolong Chen,et al.  Molecule Oxygen Induced Ferromagnetism and Half-metallicity in α-BaNaO4: A First Principles Study. , 2020, Journal of the American Chemical Society.

[17]  Yong Baek Kim,et al.  Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3 , 2019, Nature Physics.

[18]  Huaibao Tang,et al.  Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. , 2019, Journal of the American Chemical Society.

[19]  Jinlan Wang,et al.  Auxetic B4N Monolayer: A promising 2D material with In-Plane Negative Poisson's Ratio and Large Anisotropic Mechanics. , 2019, ACS applied materials & interfaces.

[20]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[21]  Jinlan Wang,et al.  MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. , 2019, Nanoscale.

[22]  R. Cava,et al.  VI3—a New Layered Ferromagnetic Semiconductor , 2018, Advanced materials.

[23]  Bing Wang,et al.  Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. , 2018, Nanoscale.

[24]  H. Xiang,et al.  Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors. , 2018, Journal of the American Chemical Society.

[25]  Jinlan Wang,et al.  High Curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. , 2018, Nanoscale horizons.

[26]  Nathan C Frey,et al.  Tuning Noncollinear Spin Structure and Anisotropy in Ferromagnetic Nitride MXenes. , 2018, ACS nano.

[27]  Qian Wang,et al.  A New Anisotropic Dirac Cone Material: A B2S Honeycomb Monolayer. , 2018, The journal of physical chemistry letters.

[28]  N. Kioussis,et al.  Prediction of manganese trihalides as two-dimensional Dirac half-metals , 2018 .

[29]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[30]  Binghai Yan,et al.  Topological antiferromagnetic spintronics , 2018 .

[31]  Hanwen Wang,et al.  Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor , 2018, Nature Nanotechnology.

[32]  Jinlong Yang,et al.  Low‐dimensional half‐metallic materials: theoretical simulations and design , 2017 .

[33]  Jinlong Yang,et al.  Half-Metallicity in One-Dimensional Metal Trihydride Molecular Nanowires. , 2017, Journal of the American Chemical Society.

[34]  Jinlong Yang,et al.  Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. , 2017, Nano letters.

[35]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[36]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[37]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[38]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[39]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[40]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[41]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[42]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[44]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[49]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[50]  J. Kanamori Crystal Distortion in Magnetic Compounds , 1960 .

[51]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[52]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[53]  Gang Xiao,et al.  Novel two-dimensional ferromagnetic materials CrX2 (X = O, S, Se) with high Curie temperature , 2022, Journal of Materials Chemistry C.