Expected geoneutrino signal at JUNO using local integrated 3-D refined crustal model

Geoneutrinos serve as a potent tool for comprehending the radiogenic power and composition of Earth. Although geoneutrinos have been observed in prior experiments, the forthcoming generation of experiments,such as JUNO, will be necessary for fully harnessing their potential. Precise prediction of the crustal contribution is vital for interpreting particlephysics measurements in the context of geo-scientific inquiries. Nonetheless, existing models such as JULOC and GIGJ have limitations in accurately forecasting the crustal contribution. This paper introduces JULOCI, the novel 3-D integrated crustal model of JUNO, which employs seismic, gravity, rock sample, and heat flow data to precisely estimate the geoneutrino signal of the lithosphere. The model indicates elevated concentrations of uranium and thorium in southern China, resulting in unexpectedly strong geoneutrino signals.The accuracy of JULOC-I, coupled with a decade of experimental data, affords JUNO the opportunity to test multiple mantle models. Once operational, JUNO can validate the model predictions and enhance the precision of mantle measurements. All in all, the improved accuracy ofJULOC-I represents a substantial stride towards comprehending the geochemical distribution of the South China crust, offering a valuable tool for investigating the composition and evolution of the Earth through geoneutrinos.

[1]  Zhiwei Li,et al.  Joint tomographic inversion of crustal structure beneath the eastern Tibetan Plateau with ambient noise and gravity data , 2021, Geophysical Journal International.

[2]  Cambridge University Press Cambridge University Press , 2021 .

[3]  Zhiwei Li,et al.  JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO , 2020, Physics of the Earth and Planetary Interiors.

[4]  Yu-Feng Li,et al.  Non-negligible oscillation effects in the crustal geoneutrino calculations , 2019, Physical Review D.

[5]  A. D. Ludovico,et al.  Comprehensive geoneutrino analysis with Borexino , 2019, Physical Review D.

[6]  G. Salamanna,et al.  GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment , 2019, Journal of Geophysical Research: Solid Earth.

[7]  M. Yamano,et al.  Stochastic modeling of 3-D compositional distribution in the crust with Bayesian inference and application to geoneutrino observation in Japan , 2019, Physics of the Earth and Planetary Interiors.

[8]  W. McDonough,et al.  Potential of geo-neutrino measurements at JUNO , 2015, 1510.01523.

[9]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[10]  M. Misiaszek,et al.  Spectroscopy of geoneutrinos from 2056 days of Borexino data , 2015, 1506.04610.

[11]  W. McDonough,et al.  Expected geoneutrino signal at JUNO , 2014, Progress in Earth and Planetary Science.

[12]  E. Lisi,et al.  Status of three-neutrino oscillation parameters, circa 2013 , 2013, 1312.2878.

[13]  Jun Cao,et al.  Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.

[14]  L. Cadonati,et al.  Measurement of geo-neutrinos from 1353 days of Borexino , 2013, 1303.2571.

[15]  W. McDonough,et al.  A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.

[16]  W. McDonough,et al.  Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle , 2012, 1207.0853.

[17]  Georges Balmino,et al.  Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies , 2012, Journal of Geodesy.

[18]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[19]  Borexino Collaboration Observation of Geo-Neutrinos , 2010, 1003.0284.

[20]  W. McDonough,et al.  The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .

[21]  H. Palme,et al.  Collisional erosion and the non-chondritic composition of the terrestrial planets , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  T. Brocher Empirical relations between elastic wavespeeds and density in the Earth's crust , 2005 .

[23]  M. Decowski,et al.  Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.

[24]  M. Lissia,et al.  Antineutrinos from Earth: A reference model and its uncertainties , 2003, hep-ph/0309013.

[25]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[26]  C. Conrad,et al.  How Mantle Slabs Drive Plate Tectonics , 2002, Science.

[27]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[28]  Yang Wang Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation , 2001 .

[29]  B. Kennett,et al.  Preface to the special issue ``Thermal Studies of the Earth's Structure and Geodynamics'' , 2001 .

[30]  Jian Lin,et al.  Preferential mantle lithospheric extension under the South China margin , 2001 .

[31]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[32]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[33]  C. M. Budwine,et al.  Institute of geophysics and planetary physics , 1991 .

[34]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[35]  N. Holloway North Palawan Block, Philippines--Its Relation to Asian Mainland and Role in Evolution of South China Sea , 1982 .

[36]  C. Lomnitz Geodynamics. , 1973, Science.

[37]  B. Mason Composition of the Earth , 1966, Nature.

[38]  Huang Weijian,et al.  The Moho depth map(1:5000000) in the land and seas of China and adjacent areas and its geological implications , 2014 .

[39]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[40]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[41]  Mirko Reguzzoni,et al.  Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis , 2009 .

[42]  白井 淳平 Precision Measurement of Neutrino Oscillation Parameters with KamLAND , 2008 .

[43]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[44]  M. Decowski,et al.  UvA-DARE (Digital Academic Repository) Reactor on-off antineutrino measurement with KamLAND , 2022 .