Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface

Abstract.In one space dimension we address the homogenization of the spectral problem for a singularly perturbed diffusion equation in a periodic medium. Denoting by ε the period, the diffusion coefficient is scaled as ε2. The domain is made of two purely periodic media separated by an interface. Depending on the connection between the two cell spectral equations, three different situations arise when ε goes to zero. First, there is a global homogenized problem as in the case without an interface. Second, the limit is made of two homogenized problems with a Dirichlet boundary condition on the interface. Third, there is an exponential localization near the interface of the first eigenfunction.

[1]  Carlos Castro,et al.  Low Frequency Asymptotic Analysis of a String with Rapidly Oscillating Density , 2000, SIAM J. Appl. Math..

[2]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[3]  Grégoire Allaire,et al.  Homogenization of a spectral problem in neutronic multigroup diffusion , 2000 .

[4]  Serguei M. Kozlov,et al.  Effective Diffusion for a Parabolic Operator with Periodic Potential , 1993, SIAM J. Appl. Math..

[5]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[6]  J. Mawhin,et al.  Equations différentielles ordinaires. Tome 1 , 1973 .

[7]  Homogeneisation des modeles de diffusion en neutronique , 1999 .

[8]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[9]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[10]  Grégoire Allaire,et al.  HOMOGENIZATION OF THE CRITICALITY SPECTRAL EQUATION IN NEUTRON TRANSPORT , 1999 .

[11]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[12]  Andrey L. Piatnitski Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic Equations , 1998 .

[13]  Yves Capdeboscq Homogenization of a neutronic critical diffusion problem with drift , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Grégoire Allaire,et al.  Analyse asymptotique spectrale d’un problème de diffusion neutronique , 1997 .

[15]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[16]  W. Magnus,et al.  Hill's equation , 1966 .

[17]  G. Allaire Homogenization and two-scale convergence , 1992 .

[18]  P. Anselone,et al.  Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .

[19]  Yves Capdeboscq Homogenization of a diffusion equation with drift , 1998 .

[20]  C. Conca,et al.  Fluids And Periodic Structures , 1995 .

[21]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .