Photosensitive azobispyridine gold(I) and silver(I) complexes.

The neutral and cationic dinuclear gold(I) compounds [(μ-N-N)(AuR)(2)] (N-N = 2,2'-azobispyridine (2-abpy), 4,4'-azobispyridine (4-abpy); R = C(6)F(5), C(6)F(4)OC(12)H(25)-p, C(6)F(4)OCH(2)C(6)H(4)OC(12)H(25)-p) and [(μ-N-N){Au(PR(3))}(2)](CF(3)SO(3))(2) (N-N = 2-abpy, 4-abpy, R = Ph, Me) have been obtained by displacement of a weakly coordinated ligand by an azobispyridine ligand. The corresponding silver(I) dinuclear [(μ-2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] and polynuclear [{Ag(CF(3)SO(3))(4-abpy)}(n)] compounds have been obtained. The molecular structures of [(μ-2-abpy){Au(PPh(3))}(2)](CF(3)SO(3))(2) and [(μ-4-abpy){Au(PMe(3))}(2)](CF(3)SO(3))(2) have been confirmed by X-ray diffraction studies and feature linear gold(I) centers coordinated by pyridyl groups, and non-coordinated azo groups. In contrast the X-ray structure of [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] shows tetracoordinated silver(I) centers involving chelating N-N coordination by pyridyl and azo nitrogen atoms. The gold(I) compounds with a long alkoxy chain do not behave as liquid crystals, and decompose before their melting point. The soluble gold(I) derivatives are photosensitive in solution and isomerize to the cis azo isomer under UV irradiation, returning photochemically or thermally to the most stable initial trans isomer. The silver(I) derivative [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] also photoisomerizes in solution under UV irradiation, showing that its solid state structure, which would block isomerization by azo coordination, is easily broken. These processes have been monitored by UV-vis absorption and (1)H NMR spectroscopy. All these compounds are non-emissive in the solid state, even at 77 K.

[1]  N. S. S. Kumar,et al.  Butadiene-based photoresponsive soft materials. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[2]  Nihal Deligonul,et al.  Phosphine- and carbene-ligated silver acetate: easily-accessed synthons for reactions with silylated nucleophiles. , 2009, Inorganic chemistry.

[3]  J. Etxebarria,et al.  Azo isocyanide gold(i) liquid crystals, highly birefringent and photosensitive in the mesophase. , 2009, Inorganic chemistry.

[4]  R. Beckhaus,et al.  Reactions of Low-Valent Titanocene(II) Fragments with trans-4,4′-Azobispyridine (RN═NR, R = C5H4N): Formation of Tetranuclear Molecular Squares by trans−cis Isomerization , 2009 .

[5]  C. Kavakli,et al.  Structural and Spectroscopic Evidence for Marginal Metal-to-Ligand Charge Transfer in Complexes Pt(abpy)Me3X, abpy = 2,2′-Azobispyridine, X = Cl, Br, I† , 2008 .

[6]  Villö K. Pálfi,et al.  Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films , 2008 .

[7]  Shuang Liu,et al.  Multinuclear self-assembly via half-sandwich complexes Cp*M[S2C2(B10H10)] and pyridine-based ligands. , 2008, Dalton transactions.

[8]  G. Pálinkás,et al.  Self-assembly of gold(I) with diphosphine and bitopic nitrogen donor linkers in the presence of trifluoroacetate anion: formation of coordination polymer versus discrete macrocycle , 2007 .

[9]  Yanlei Yu,et al.  Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. , 2007, Angewandte Chemie.

[10]  A. Laguna,et al.  Tetrahydrothiophene)Gold(I) or Gold(III) Complexes , 2007 .

[11]  V. Yam,et al.  Tetranuclear Macrocyclic Gold(I) Alkynyl Phosphine Complex Containing Azobenzene Functionalities: A Dual-Input Molecular Logic with Photoswitching Behavior Controllable via Silver(I) Coordination/Decoordination , 2007 .

[12]  F. Arslan Synthesis, crystal structure and spectrothermal characterization of zinc(II) salicylato complex with 2,2′-azobispyridine, [Zn(Hsal)2(H2O)(abpy)]·H2O , 2007 .

[13]  S. Kitagawa,et al.  Functionalities of one-dimensional dynamic ultramicropores in nickel(II) coordination polymers. , 2006, Inorganic Chemistry.

[14]  Soo Young Park,et al.  Synthesis and Photoisomerization Characteristics of a 2,4,4‘-Substituted Azobenzene Tethered to the Side Chains of Polymethacrylamide , 2006 .

[15]  Duncan M. Tooke,et al.  Ruthenium polypyridyl complexes containing the bischelating ligand 2,2′-azobispyridine. Synthesis, characterization and crystal structures , 2006 .

[16]  R. B. Sunoj,et al.  Theoretical and experimental evidence for a new kind of spin-coupled singlet species: isomeric mixed-valent complexes bridged by a radical anion ligand. , 2005, Angewandte Chemie.

[17]  W. Smith,et al.  Chromophore containing bipyridyl ligands. Part 1: supramolecular solid-state structure of Ag(I) complexes , 2005 .

[18]  S. Kitagawa,et al.  Synthesis and crystallographic characterization of low-dimensional and porous coordination compounds capable of supramolecular aromatic interaction using the 4,4'-azobis(pyridine) ligand. , 2005, Inorganic Chemistry.

[19]  John C. McMurtrie,et al.  Dinuclear bis-beta-diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallo-supramolecular structures. , 2005, Dalton transactions.

[20]  W. Kaim,et al.  A complete series of tricarbonylhalidorhenium(I) complexes (abpy)Re(CO) 3 (Hal), Hal=F, Cl, Br, I; abpy=2,2′-azobispyridine: Structures, spectroelectrochemistry and EPR of reduced forms , 2004 .

[21]  W. Kaim,et al.  Complex reduction chemistry of (abpy)PtCl2, abpy = 2,2'-azobispyridine: formation of cyclic [(micro,eta2:eta1-abpy)PtCl]2(2+) with a new coordination mode for abpy and a near-infrared ligand-to-ligand intervalence charge transfer absorption of the one-electron reduced state. , 2004, Inorganic chemistry.

[22]  P. Antharjanam,et al.  Synthesis and study of novel azopyridine-containing hexacatenar silver mesogens , 2004 .

[23]  Yue Zhao,et al.  Azopyridine Side Chain Polymers: An Efficient Way To Prepare Photoactive Liquid Crystalline Materials through Self-Assembly , 2004 .

[24]  H. Schmidbaur,et al.  The auration of 2-hydroxy-pyridine (2-pyridone): preparative and structural studies and a comparison with reactions of related aliphatic O,N-donors , 2004 .

[25]  Surajit Chattopadhyay,et al.  Diazoketiminato complexes of Au(III): syntheses, characterisation and structure , 2003 .

[26]  K. Dunbar,et al.  Synthesis, X-ray Studies and Magnetic Properties of Dinuclear NiII and CuII Complexes Bridged by the Azo-2,2′-bipyridine Ligand , 2003 .

[27]  I. Chakraborty,et al.  New Rhenium(I) and Rhenium(II) Species Assembled by Stereospecific Azopyridine Chelation , 2003 .

[28]  Tomiki Ikeda,et al.  Anisotropic Bending and Unbending Behavior of Azobenzene Liquid‐Crystalline Gels by Light Exposure , 2003 .

[29]  P. Antharjanam,et al.  Novel Azopyridine-Containing Silver Mesogens: Synthesis, Liquid-Crystalline, and Photophysical Properties , 2002 .

[30]  W. Wong,et al.  Synthesis, Structural Characterization, Solvatochromism, and Electrochemistry of Tetra‐Osmium Carbonyl Clusters Containing Azo‐Ligands , 2001 .

[31]  W. Kaim Complexes with 2,2â²-azobispyridine and related 'S-frame' bridging ligands containing the azo function , 2001 .

[32]  R. Pritchard,et al.  Synthesis and characterisation of some azo-containing phosphine complexes of Au(I): crystal and molecular structure of [Au(CCPh){6-P(Ph)2-1-(4-Me2NC6H4N2)C10H5-2-OH}]·CHCl3 , 2001 .

[33]  R. Puddephatt,et al.  Ring, polymer and network structures in silver(I) complexes with dipyridyl and diphosphine ligands , 2001 .

[34]  Qingjin Meng,et al.  Syntheses and Structures of Silver and Copper Coordination Polymers with 4,4′‐Azopyridine − Effect of Counter Anions and π−π Interactions on the Network Systems , 2000 .

[35]  P. Sommer-Larsen,et al.  Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies , 2000 .

[36]  A. Persoons,et al.  Organometallic complexes for nonlinear optics ☆: Part 19. Syntheses and molecular quadratic hyperpolarizabilities of indoanilino–alkynyl–ruthenium complexes , 2000 .

[37]  A. Laguna,et al.  Structural characterization of silver(I) complexes [Ag(O3SCF3)(L)] (L=PPh3, PPh2Me, SC4H8) and [AgLn](CF3SO3) (n=2–4), (L=PPh3, PPh2Me) , 2000 .

[38]  Christoph Janiak,et al.  A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands , 2000 .

[39]  P. Espinet Liquid crystals ‘made of gold’ , 1999 .

[40]  S. Kitagawa,et al.  Solid and solution structures of ternary gold(I) complexes with triphenylphosphine and nitrogen-containing ligands , 1997 .

[41]  M. Bermúdez,et al.  The use of thermotropic liquid crystals in organometallic chemistry. Synthesis of new mercury, silver and gold complexes with 4,4′-disubstituted azob , 1994 .

[42]  M. Bermúdez,et al.  Reactivity of ketonylgold(III) complexes. Crystal and molecular structure of SP-4-4-[Au(2-C6H4N2Ph){CH2COC6H2(OMe)3-3,4,5} Cl(PPh3)] and SP-4-4-[Au(2-C6H4N2Ph)(CH2COMe)Cl(PPh3)] , 1993 .

[43]  J. Serrano,et al.  Transition metal liquid crystals: advanced materials within the reach of the coordination chemist , 1992 .

[44]  Shai Rubin,et al.  Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone , 1991 .

[45]  C. Joachim,et al.  Control of intramolecular electron transfer by a chemical reaction. The 4,4'-azopyridine/1,2-bis(4-pyridyl)hydrazine system , 1991 .

[46]  A. Fujishima,et al.  Photoelectrochemical information storage using an azobenzene derivative , 1990, Nature.

[47]  M. Bermúdez,et al.  Synthesis of intermediates in the C–H activation of acetone with 2-phenylazophenylgold(III) complexes and in the C–C coupling of aryl groups from diarylgold(III) complexes. Crystal and molecular structures of [Au{C6H3(NNC6H4Me-4′)-2-Me-5}(acac-C)Cl](acac = acetylacetonate), cis-[Au(C6H4NNPh-2)Cl2(PP , 1990 .

[48]  O. Mitsunobu The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products , 1981 .

[49]  Seiji Shinkai,et al.  Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion , 1981 .

[50]  J. Vicente,et al.  Synthesis and Reactivity of Dichloro‐2‐(phenylazo)phenyl‐gold(III). , 1981 .

[51]  S. Merlino,et al.  Reactions of Au2Cl6 with Azobenzene and 4,4'-Azotoluene and Crystal and Molecular Structure of the 4,4'-Azotoluene Adduct of AuCl3 , 1978 .

[52]  G. Huttner,et al.  Gold-Komplexe von Diphosphinomethanen, I. Synthese und Kristallstruktur zweikerniger Gold(I)-Verbindungen , 1977 .

[53]  A. Laguna,et al.  Preparation and properties of stable salts containing mono- or bis-(pentafluorophenyl)aurate(I) and mono-, tris-, or tetrakis-(pentafluorophenyl)aurate(III) ions , 1976 .

[54]  A. Lever,et al.  Complexes of 2,2'-azopyridine with iron(II), cobalt(II), nickel(II), copper(I), and copper(II). Infrared study , 1969 .