Circuit quantum electrodynamics with two remote electron spins

We report the coherent coupling of two electron spins at a distance via virtual microwave photons. Each spin is trapped in a silicon double quantum dot at either end of a superconducting resonator, achieving spin-photon couplings up to around gs/2π = 40 MHz. As the two spins are brought into resonance with each other, but detuned from the photons, an avoided crossing larger than the spin linewidths is observed with an exchange splitting around 2J/2π = 20 MHz. In addition, photon number states are resolved from the shift 2χs/2π = −13 MHz they induce on the spin frequency. These results could enable long-range two-qubit gates between spin qubits and scalable networks of spin qubits on a chip.

[1]  G. Guo,et al.  Correlated spectrum of distant semiconductor qubits coupled by microwave photons. , 2020, Science bulletin.

[2]  L. Vandersypen,et al.  On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots , 2020, Physical Review Applied.

[3]  G. Guo,et al.  Dipole coupling of a hole double quantum dot in germanium hut wire to a microwave resonator , 2019, New Journal of Physics.

[4]  J. Koski,et al.  Virtual-photon-mediated spin-qubit–transmon coupling , 2019, Nature Communications.

[5]  Mats Eriksson,et al.  Quantum computing with semiconductor spins , 2019, Physics Today.

[6]  G. Burkard,et al.  Optimal dispersive readout of a spin qubit with a microwave resonator , 2019, Physical Review B.

[7]  J. R. Petta,et al.  Resonant microwave-mediated interactions between distant electron spins , 2019, Nature.

[8]  G. Burkard,et al.  Electric-field control and noise protection of the flopping-mode spin qubit , 2019, Physical Review B.

[9]  T. Kontos,et al.  Highly coherent spin states in carbon nanotubes coupled to cavity photons , 2019, npj Quantum Information.

[10]  G. Burkard,et al.  Optimized cavity-mediated dispersive two-qubit gates between spin qubits , 2019, Physical Review B.

[11]  Edwin Barnes,et al.  Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator , 2019, Physical Review B.

[12]  J. Cirac,et al.  Quantum simulation and optimization in hot quantum networks , 2018, Physical Review B.

[13]  C. K. Andersen,et al.  Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit , 2018 .

[14]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[15]  A. Wallraff,et al.  Coherent spin–photon coupling using a resonant exchange qubit , 2018, Nature.

[16]  Werner Wegscheider,et al.  Microwave Photon-Mediated Interactions between Semiconductor Qubits , 2018, Physical Review X.

[17]  A. C. Doherty,et al.  Coupling two spin qubits with a high-impedance resonator , 2018, Physical Review B.

[18]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[19]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[20]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[21]  J. R. Petta,et al.  Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon , 2016, 1610.05571.

[22]  W. A. Coish,et al.  Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings , 2016, Nanotechnology.

[23]  Jacob M. Taylor,et al.  Entangling distant resonant exchange qubits via circuit quantum electrodynamics , 2016, 1603.04829.

[24]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[25]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[26]  F. Nori,et al.  Coupling Two Distant Double Quantum Dots with a Microwave Resonator. , 2014, Nano letters.

[27]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[28]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[29]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[30]  T. Kontos,et al.  Spin quantum bit with ferromagnetic contacts for circuit QED. , 2010, Physical review letters.

[31]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[32]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[33]  S. Girvin,et al.  Resolving photon number states in a superconducting circuit , 2006, Nature.

[34]  M. Lukin,et al.  Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip , 2006, cond-mat/0605144.

[35]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[36]  S. Girvin,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006, cond-mat/0602322.

[37]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[38]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[39]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[40]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.