Quel intérêt à la navigation des expansions vertébrales par l’implant SpineJack en traumatologie thoracique et lombaire ?

[1]  S. Ruatti,et al.  3D-imaging in percutaneous spine surgery using the Surgivisio system. , 2020, Orthopaedics & traumatology, surgery & research : OTSR.

[2]  J. Tonetti,et al.  Role of 3D intraoperative imaging in orthopedic and trauma surgery. , 2019, Orthopaedics & traumatology, surgery & research : OTSR.

[3]  N. Theumann,et al.  A prospective, international, randomized, non-inferiority study comparing an implantable titanium vertebral augmentation device versus balloon kyphoplasty in the reduction of vertebral compression fractures (SAKOS study). , 2019, The spine journal : official journal of the North American Spine Society.

[4]  S. Ruatti,et al.  Clinical and radiological outcomes in thoracolumbar fractures using the SpineJack device. A prospective study of seventy-four patients with a two point three year mean of follow-up , 2019, International Orthopaedics.

[5]  J. Tonetti,et al.  T1 Vertebra Pedicular Osteoid Osteoma: Minimally Invasive Surgical Resection Aided by New Integrated Navigation to 3D Imaging Device , 2019, Case reports in orthopedics.

[6]  D. Noriega,et al.  Long-term safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study , 2018, Osteoporosis International.

[7]  T. Tajsic,et al.  Spinal navigation for minimally invasive thoracic and lumbosacral spine fixation: implications for radiation exposure, operative time, and accuracy of pedicle screw placement , 2018, European Spine Journal.

[8]  Juan Esteban Muñoz Montoya,et al.  A Colombian experience involving SpineJack®, a consecutive series of patients experiencing spinal fractures, percutaneous approach and anatomical restoration 2016-2017. , 2018, Journal of spine surgery.

[9]  D. Noriega,et al.  Requirements for a Stable Long-Term Result in Surgical Reduction of Vertebral Fragility Fractures. , 2017, World neurosurgery.

[10]  Christine Detrembleur,et al.  Pedicle screw insertion accuracy in terms of breach and reposition using a new intraoperative cone beam computed tomography imaging technique and evaluation of the factors associated with these parameters of accuracy: a series of 695 screws , 2017, European Spine Journal.

[11]  A. V. von Keudell,et al.  Impact of Sagittal Balance on Clinical Outcomes in Surgically Treated T12 and L1 Burst Fractures: Analysis of Long-Term Outcomes after Posterior-Only and Combined Posteroanterior Treatment , 2017, BioMed research international.

[12]  D. Noriega,et al.  Risk-benefit analysis of navigation techniques for vertebral transpedicular instrumentation: a prospective study. , 2017, The spine journal : official journal of the North American Spine Society.

[13]  A. Krüger,et al.  Safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study , 2019, Osteoporosis International.

[14]  Luca Saba,et al.  Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures , 2015, CardioVascular and Interventional Radiology.

[15]  Hailong Zhang,et al.  Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis , 2016, Neurosurgical Review.

[16]  P. Merloz,et al.  Interest of intra-operative 3D imaging in spine surgery: a prospective randomized study , 2016, European Spine Journal.

[17]  Klaus-Peter Schmitz,et al.  Minimum cement volume required in vertebral body augmentation--A biomechanical study comparing the permanent SpineJack device and balloon kyphoplasty in traumatic fracture. , 2015, Clinical biomechanics.

[18]  S. Ruchholtz,et al.  Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study. , 2015, The spine journal : official journal of the North American Spine Society.

[19]  A. Krüger,et al.  Clinical Outcome after the Use of a New Craniocaudal Expandable Implant for Vertebral Compression Fracture Treatment: One Year Results from a Prospective Multicentric Study , 2015, BioMed research international.

[20]  Justin K Scheer,et al.  Evidence-Based Medicine of Traumatic Thoracolumbar Burst Fractures: A Systematic Review of Operative Management across 20 Years , 2014, Global spine journal.

[21]  B. Aarabi,et al.  AOSpine Thoracolumbar Spine Injury Classification System: Fracture Description, Neurological Status, and Key Modifiers , 2013, Spine.

[22]  P. Merloz,et al.  Kyphoplasty versus vertebroplasty in osteoporotic thoracolumbar spine fractures. Short-term retrospective review of a multicentre cohort of 127 consecutive patients. , 2012, Orthopaedics & traumatology, surgery & research : OTSR.

[23]  Xiang-Yang Wang,et al.  Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures. , 2008, Journal of neurosurgery. Spine.