Excluding induced subgraphs

In this paper we survey some results concerning the structure and properties of families of graphs defined by excluding certain induced subgraphs, including perfect graphs, claw-free graphs, even-hole-free graphs and others.

[1]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[2]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[3]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory, Ser. B.

[4]  Gérard Cornuéjols,et al.  Compositions for perfect graphs , 1985, Discret. Math..

[5]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[6]  Vasek Chvátal,et al.  Bull-free Berge graphs are perfect , 1987, Graphs Comb..

[7]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[8]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[9]  Michele Conforti,et al.  Testing balancedness and perfection of linear matrices , 1993, Math. Program..

[10]  Gérard Cornuéjols,et al.  Even‐hole‐free graphs part I: Decomposition theorem , 2002, J. Graph Theory.

[11]  Gérard Cornuéjols,et al.  Even‐hole‐free graphs part II: Recognition algorithm , 2002, J. Graph Theory.

[12]  Gérard Cornuéjols,et al.  Decomposition of odd-hole-free graphs by double star cutsets and 2-joins , 2004, Discret. Appl. Math..

[13]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[14]  Ken-ichi Kawarabayashi,et al.  Detecting even holes , 2005, J. Graph Theory.

[15]  Nicolas Trotignon,et al.  Algorithms for Perfectly Contractile Graphs , 2005, SIAM J. Discret. Math..

[16]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[17]  Maria Chudnovsky Berge trigraphs , 2006, J. Graph Theory.

[18]  Paul D. Seymour,et al.  Testing for a theta , 2007, SODA '07.

[19]  Paul D. Seymour,et al.  Claw-free graphs. I. Orientable prismatic graphs , 2007, J. Comb. Theory, Ser. B.

[20]  Maria Chudnovsky,et al.  Coloring quasi-line graphs , 2007 .

[21]  Paul D. Seymour,et al.  Claw-free graphs. IV. Decomposition theorem , 2008, J. Comb. Theory, Ser. B.

[22]  Maria Chudnovsky,et al.  Detecting a Theta or a Prism , 2008, SIAM J. Discret. Math..

[23]  Paul D. Seymour,et al.  Claw-free graphs. V. Global structure , 2008, J. Comb. Theory, Ser. B.

[24]  Da Silva,et al.  Even-hole-free graphs , 2008 .

[25]  Paul D. Seymour,et al.  Claw-free graphs. II. Non-orientable prismatic graphs , 2008, J. Comb. Theory, Ser. B.

[26]  Paul D. Seymour,et al.  Claw-free graphs. III. Circular interval graphs , 2008, J. Comb. Theory, Ser. B.

[27]  Bruce A. Reed,et al.  Bisimplicial vertices in even-hole-free graphs , 2008, J. Comb. Theory, Ser. B.

[28]  Maria Chudnovsky,et al.  The Erdös-Hajnal conjecture for bull-free graphs , 2008, J. Comb. Theory, Ser. B.