Adaptive strain estimation using retrospective processing [medical US elasticity imaging]

Because errors in displacement and strain estimates depend on the magnitude of the induced strain, the strain signal-to-noise ratio (SNR) will be a function of the applied deformation. If deformation is applied at the body surface, it is difficult during data acquisition to select a single surface displacement providing the highest strain SNR throughout the image. By applying continuous deformation and capturing data in real-time, the surface displacement providing the highest strain SNR can be selected retrospectively. A method to adaptively optimize strain SNR over the image plane using retrospective processing is presented and demonstrated with experimental results.

[1]  F. S. Vinson,et al.  A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. , 1987, Journal of rehabilitation research and development.

[2]  M.A. Lubinski,et al.  Reconstructive Ultrasound Elasticity Imaging for Renal Transplant Diagnosis: Kidney Ex Vivo Results , 2000, Ultrasonic imaging.

[3]  J. Ophir,et al.  Theoretical bounds on strain estimation in elastography , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  M. O’Donnell,et al.  Internal displacement and strain imaging using ultrasonic speckle tracking , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Stanislav Emelianov,et al.  Quantitative elasticity imaging , 1993 .

[6]  M.A. Lubinski,et al.  Nonlinear estimation of the lateral displacement using tissue incompressibility , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  M. O’Donnell,et al.  Ultrasound elasticity imaging using Fourier based speckle tracking algorithm , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[8]  M.A. Lubinski,et al.  Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  G. Carter Coherence and time delay estimation , 1987, Proceedings of the IEEE.

[10]  A.R. Skovoroda,et al.  Measuring the Elastic Modulus of Small Tissue Samples , 1998, Ultrasonic imaging.

[11]  J. Ophir,et al.  Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: applications to elastography. , 1997, Ultrasound in medicine & biology.

[12]  M. O’Donnell,et al.  Theoretical analysis and verification of ultrasound displacement and strain imaging , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  K. Parker,et al.  "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. , 1990, Ultrasound in medicine & biology.

[14]  Jonathan Ophir,et al.  Performance Optimization in Elastography: Multicompression with Temporal Stretching , 1996 .

[15]  Michael F. Insana,et al.  Phantoms for elastography , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[16]  K J Parker,et al.  Imaging of the elastic properties of tissue--a review. , 1996, Ultrasound in medicine & biology.

[17]  D B Plewes,et al.  Visualizing tissue compliance with MR imaging , 1995, Journal of magnetic resonance imaging : JMRI.

[18]  A. Manduca,et al.  Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. , 1995, Science.

[19]  A. P. Sarvazyan,et al.  Low-frequency acoustic characteristics of biological tissues , 1975 .

[20]  K. Parker,et al.  Sono-Elasticity: Medical Elasticity Images Derived from Ultrasound Signals in Mechanically Vibrated Targets , 1988 .

[21]  J. Meunier,et al.  Ultrasonic biomechanical strain gauge based on speckle tracking , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[22]  A.R. Skovoroda,et al.  Tissue elasticity reconstruction based on ultrasonic displacement and strain images , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  S Y Emelianov,et al.  Elasticity reconstructive imaging by means of stimulated echo MRI , 1998, Magnetic resonance in medicine.

[24]  K. R. Raghavan,et al.  Lateral displacement estimation using tissue incompressibility , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  W. Walker,et al.  A fundamental limit on delay estimation using partially correlated speckle signals , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[27]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[28]  Stanislav Emelianov,et al.  Reconstructive Elasticity Imaging , 1995 .

[29]  M. O’Donnell,et al.  An elasticity microscope. Part II: Experimental results , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Richard A. F. Grieve,et al.  CARTER , 1945 .

[31]  M. O’Donnell,et al.  Reconstructive ultrasound elasticity imaging for renal pathology detection , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[32]  J. Ophir,et al.  Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues , 1991, Ultrasonic imaging.

[33]  M. Bilgen,et al.  Deformation models and correlation analysis in elastography. , 1996, The Journal of the Acoustical Society of America.