Interhemispheric cortical long-term potentiation in the auditory cortex requires heterosynaptic activation of entorhinal projection

[1]  M. Thiebaut de Schotten,et al.  The emergent properties of the connected brain , 2022, Science.

[2]  James G. King,et al.  A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex , 2022, Nature Communications.

[3]  Jufang He,et al.  The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin , 2021, eLife.

[4]  David J. Barker,et al.  pMAT: An open-source software suite for the analysis of fiber photometry data , 2020, Pharmacology Biochemistry and Behavior.

[5]  Nicolas Brunel,et al.  Synaptic plasticity rules with physiological calcium levels , 2020, Proceedings of the National Academy of Sciences.

[6]  C. Caltagirone,et al.  LTP-like cortical plasticity predicts conversion to dementia in patients with memory impairment , 2020, Brain Stimulation.

[7]  Jufang He,et al.  Visuoauditory Associative Memory Established with Cholecystokinin Under Anesthesia Is Retrieved in Behavioral Contexts , 2020, The Journal of Neuroscience.

[8]  Yulong Li,et al.  G‐protein‐coupled receptor‐based sensors for imaging neurochemicals with high sensitivity and specificity , 2019, Journal of neurochemistry.

[9]  K. Yung,et al.  Cholecystokinin release triggered by NMDA receptors produces LTP and sound–sound associative memory , 2019, Proceedings of the National Academy of Sciences.

[10]  J. Isaac,et al.  Interhemispheric plasticity is mediated by maximal potentiation of callosal inputs , 2019, Proceedings of the National Academy of Sciences.

[11]  C. Caltagirone,et al.  Impaired Spike Timing Dependent Cortico-Cortical Plasticity in Alzheimer's Disease Patients. , 2018, Journal of Alzheimer's disease : JAD.

[12]  S. Chakrabarty,et al.  Simultaneous Assessment of Homonymous and Heteronymous Monosynaptic Reflex Excitability in the Adult Rat , 2018, eNeuro.

[13]  Anatol C. Kreitzer,et al.  A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice , 2018, Cell.

[14]  Claus C. Hilgetag,et al.  Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse , 2015, Brain Structure and Function.

[15]  Crystal Rock,et al.  Callosal Projections Drive Neuronal-Specific Responses in the Mouse Auditory Cortex , 2015, The Journal of Neuroscience.

[16]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[17]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[18]  Marco Bozzali,et al.  Dopaminergic Modulation of Cortical Plasticity in Alzheimer’s Disease Patients , 2014, Neuropsychopharmacology.

[19]  Xi Chen,et al.  Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex , 2013, Cell Research.

[20]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[21]  Christopher M. Lee,et al.  Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics , 2013, The Journal of Neuroscience.

[22]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[23]  R. Zatorre,et al.  Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period , 2013, The Journal of Neuroscience.

[24]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[25]  Takao K. Hensch,et al.  Re-opening Windows: Manipulating Critical Periods for Brain Development , 2012, Cerebrum : the Dana forum on brain science.

[26]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[27]  M. Caleo,et al.  The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two , 2012, Neural plasticity.

[28]  G. Stebbins,et al.  Entorhinal cortex atrophy differentiates Parkinson's disease patients with and without dementia , 2012, Movement disorders : official journal of the Movement Disorder Society.

[29]  S. Raghavachari,et al.  Mechanisms of CaMKII action in long-term potentiation , 2012, Nature Reviews Neuroscience.

[30]  Cleofé Peña-Gómez,et al.  Changes in Cortical Plasticity Across the Lifespan , 2011, Front. Ag. Neurosci..

[31]  J. D. Macklis,et al.  Development, specification, and diversity of callosal projection neurons , 2011, Trends in Neurosciences.

[32]  D. Choquet,et al.  CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin , 2010, Neuron.

[33]  T. Hirano,et al.  Pre‐synaptic and post‐synaptic neuronal activity supports the axon development of callosal projection neurons during different post‐natal periods in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[34]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[35]  P. Tso,et al.  Characterization of mice lacking the gene for cholecystokinin , 2008, Appetite.

[36]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[37]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[38]  Lei Zhang,et al.  Activity-Dependent Development of Callosal Projections in the Somatosensory Cortex , 2007, The Journal of Neuroscience.

[39]  T. Hirano,et al.  Evidence for Activity-Dependent Cortical Wiring: Formation of Interhemispheric Connections in Neonatal Mouse Visual Cortex Requires Projection Neuron Activity , 2007, The Journal of Neuroscience.

[40]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[41]  G. Hynd,et al.  The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition? , 2005, Neuropsychology Review.

[42]  J. Borst,et al.  Post‐tetanic potentiation in the rat calyx of Held synapse , 2005, The Journal of physiology.

[43]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[44]  F. Aboitiz,et al.  One hundred million years of interhemispheric communication: the history of the corpus callosum. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[45]  R. Ritter,et al.  Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[46]  M. Andresen,et al.  Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. , 2001, Journal of neurophysiology.

[47]  D. Bennett,et al.  From Healthy Aging to Early Alzheimer's Disease: In Vivo Detection of Entorhinal Cortex Atrophy , 2000, Annals of the New York Academy of Sciences.

[48]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[49]  A. Stelzer,et al.  Temporal overlap of excitatory and inhibitory afferent input in guinea‐pig CA1 pyramidal cells , 1999, The Journal of physiology.

[50]  M. Mishkin,et al.  Object Recognition and Location Memory in Monkeys with Excitotoxic Lesions of the Amygdala and Hippocampus , 1998, The Journal of Neuroscience.

[51]  B Horwitz,et al.  Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. , 1998, Archives of neurology.

[52]  B. Roques,et al.  The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A , 1996, Peptides.

[53]  R. Armstrong The spatial pattern of discrete beta-amyloid deposits in Alzheimer's disease reflects synaptic disconnection. , 1996, Dementia.

[54]  E. Kandel,et al.  Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. , 1994, Learning & memory.

[55]  M. Bear,et al.  Hebbian synapses in visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  A. F. Nordholm,et al.  Lidocaine infusion in a critical region of cerebellum completely prevents learning of the conditioned eyeblink response. , 1993, Behavioral neuroscience.

[57]  L. F. Kolakowski,et al.  The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization. , 1993, The Journal of biological chemistry.

[58]  M. Lassonde,et al.  Sound localization in acallosal human listeners. , 1993, Brain : a journal of neurology.

[59]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[60]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[61]  J. Harvey,et al.  Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. , 1991, The Journal of physiology.

[62]  S. Kito,et al.  Cholecystokinin increases intracellular Ca2+ concentration in cultured striatal neurons , 1991, Neuropeptides.

[63]  R. Nicoll,et al.  Mechanisms underlying potentiation of synaptic transmission in rat anterior cingulate cortex in vitro. , 1991, The Journal of physiology.

[64]  A. Keller,et al.  Long-term potentiation in the motor cortex. , 1989, Science.

[65]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[66]  G. Lynch,et al.  Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation , 1987, Brain Research.

[67]  L. Swanson,et al.  Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  A. Mitani,et al.  Neuronal connections in the primary auditory cortex: An electrophysiological study in the cat , 1985, The Journal of comparative neurology.

[69]  V. Chan‐Palay,et al.  The distribution of cholecystokinin‐like immunoreactive neurons and nerve terminals in the retrohippocampal region in the rat and guinea pig , 1982, The Journal of comparative neurology.

[70]  J. N. Hayward,et al.  Cholecystokinin in hippocampal pathways , 1981, The Journal of comparative neurology.

[71]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[72]  J. Rehfeld,et al.  Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. , 1978, The Journal of biological chemistry.

[73]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[74]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[75]  Elizabeth Gould,et al.  Structural plasticity and hippocampal function. , 2010, Annual review of psychology.

[76]  Y. Kawaguchi Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro , 2005, Experimental Brain Research.

[77]  T. Lømo,et al.  Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation , 2004, Experimental Brain Research.

[78]  M. Ptito,et al.  Binaural noise stimulation of auditory callosal fibers of the cat: responses to interaural time delays , 2004, Experimental Brain Research.

[79]  Malcolm W. Brown,et al.  Recognition memory: What are the roles of the perirhinal cortex and hippocampus? , 2001, Nature Reviews Neuroscience.

[80]  Larry R. Squire,et al.  The medial temporal lobe and the hippocampus. , 2000 .

[81]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[82]  T. Wiesel The postnatal development of the visual cortex and the influence of environment. , 1982, Bioscience reports.

[83]  G. Uhl,et al.  Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[84]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .