Phase- and density-dependent population dynamics in Norwegian lemmings: interaction between deterministic and stochastic processes

We analysed two 26–year long (1970 to 1995) time–series on annual population growth rates of Norwegian lemmings (Lemmus lemmus) from Finse, south Norway, using a threshold autoregressive (TAR) approach. We demonstrate that the population dynamics is both phase– and density–dependent. The phase–dependence accounts for the observed nonlinearity. We used the deduced stochastic model structure as a basis for evaluating the dynamic properties of this system. The dynamics is characterized either by limit cycles or chaos (the latter with a strong semi–periodic component). Stochasticity is seen to play an important role in the determination of the periodicity. The ecological implications of these statistical and mathematical results are discussed.

[1]  Dennis Chitty,et al.  POPULATION PROCESSES IN THE VOLE AND THEIR RELEVANCE TO GENERAL THEORY , 1960 .

[2]  David S. Broomhead,et al.  Discussion on the Meeting on Chaos , 1992 .

[3]  J. Maynard Smith,et al.  The Stability of Predator‐Prey Systems , 1973 .

[4]  Heikki Henttonen,et al.  The Impact of Spacing Behavior in Microtine Rodents on the Dynamics of Least Weasels Mustela nivalis: A Hypothesis , 1987 .

[5]  Robert M. May,et al.  The Croonian Lecture, 1985 - When two and two do not make four: nonlinear phenomena in ecology , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[7]  P. Lewis,et al.  Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS) , 1991 .

[8]  S. Erlinge,et al.  Delayed density-dependence in a small-rodent population , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  J. Tast Will the Norwegian Lemming Become Endangered If Climate Becomes Warmer , 1991 .

[10]  L. Hansson Clethrionomys food: generic, specific and regional characteristics , 1985 .

[11]  W. Z. Lidicker,et al.  In Defense of a Multifactor Perspective in Population Ecology , 1991 .

[12]  P. Turchin Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis , 1993 .

[13]  Kung-Sik Chan,et al.  Ecology and statistics: Nonlinear sheep in a noisy world , 1998, Nature.

[14]  N. Stenseth,et al.  Voles and lemmings: chaos and uncertainty in fluctuating populations , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  Paul H. Harvey,et al.  The Analysis of Biological Populations , 1972 .

[16]  K. S. Lim ON THE STABILITY OF A THRESHOLD AR(1) WITHOUT INTERCEPTS , 1992 .

[17]  S. Erlinge Predation and noncyclicity in a microtine population in southern Sweden , 1987 .

[18]  D. Chitty,et al.  The natural selection of self-regulatory behaviour in animal populations , 1967 .

[19]  O. Liberg,et al.  Predation as a Regulating Factor on Small Rodent Populations in Southern Sweden , 1983 .

[20]  C. Nicolis,et al.  Long-term climatic transitions and stochastic resonance , 1993 .

[21]  N. Stenseth Evolutionary aspects of demographic cycles: the relevance of some models of cycles for microtine fluctuations , 1977 .

[22]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[23]  Nils Chr. Stenseth,et al.  Limit cycles in Norwegian lemmings: tensions between phase–dependence and density-dependence , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  L. Hansson Spring populations of small mammals in central Swedish Lapland in 1964-68 , 1969 .

[25]  Benjamin Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1815 .

[26]  P. Boag,et al.  A TEST OF THE CHITTY HYPOTHESIS: INHERITANCE OF LIFE‐HISTORY TRAITS IN MEADOW VOLES MICROTUS PENNSYLVANICUS , 1987, Evolution; international journal of organic evolution.

[27]  Risto Virtanen,et al.  Lemming Grazing and Structure of a Snowbed Plant Community: A Long-Term Experiment at Kilpisjärvi, Finnish Lapland@@@Lemming Grazing and Structure of a Snowbed Plant Community: A Long-Term Experiment at Kilpisjarvi, Finnish Lapland , 1997 .

[28]  N. Stenseth,et al.  Bootstrap estimated uncertainty of the dominant Lyapunov exponent for Holarctic microtine rodents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[30]  C. Krebs A review of the Chitty Hypothesis of population regulation , 1978 .

[31]  R. Ims,et al.  Modelling Survival Rates: Habitat Fragmentation and Destruction in Root Vole Experimental Populations , 1996 .

[32]  Dag Tjøstheim,et al.  Nonparametric tests of linearity for time series , 1995 .

[33]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[34]  J. Moen,et al.  Lemming Grazing on Snowbed Vegetation during a Population Peak, Northern Norway , 1993 .

[35]  Nils Chr. Stenseth,et al.  The biology of lemmings , 1993 .

[36]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[37]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[38]  P. Haccou Mathematical Models of Biology , 2022 .

[39]  H. B. Wilson,et al.  Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[41]  Ilkka Hanski,et al.  Microtine Rodent Dynamics in Northern Europe: Parameterized Models for the Predator‐Prey Interaction , 1995 .

[42]  G. O. Batzli Dynamics of Small Mammal Populations: A Review , 1992 .

[43]  N. Stenseth,et al.  A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  C. Nicolis,et al.  Stochastic resonance in chaotic dynamics , 1993 .

[45]  R. Boonstra,et al.  Breeding performance in captivity of meadow voles ( Microtus pennsylvanicus ) from decline- and increase-phase populations , 1992 .

[46]  N. Stenseth,et al.  Is spacing behaviour coupled with predation causing the micro tine density cycle? A synthesis of current process-oriented and pattern-oriented studies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  A. McGuire,et al.  Comparison of amplitudes and frequencies (spectral analyses) of density variations in long-term data sets of Clethrionomys species , 1985 .

[48]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[49]  R. Ostfeld,et al.  DENSITY-DEPENDENT PROCESSES IN MEADOW VOLES: AN EXPERIMENTAL APPROACH' , 1995 .

[50]  L. Hansson,et al.  An Interpretation of Rodent Dynamics as Due to Trophic Interactions , 1987 .

[51]  Tarja Oksanen,et al.  How much do weasels shape microtine cycles in the northern Fennoscandian taiga , 1987 .

[52]  Erkki Korpimäki,et al.  Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos , 1993, Nature.

[53]  N. Stenseth Models of bank vole and wood mouse populations. , 1985 .

[54]  K. Norrdahl POPULATION CYCLES IN NORTHERN SMALL MAMMALS , 1995, Biological reviews of the Cambridge Philosophical Society.

[55]  T. Clutton‐Brock,et al.  Noise and determinism in synchronized sheep dynamics , 1998, Nature.

[56]  W. B. Davis Voles, mice and lemmings , 1942 .

[57]  C. Krebs Population Cycles Revisited , 1996 .

[58]  A. Cockburn Social Behaviour in Fluctuating Populations , 1987 .

[59]  C. Krebs The role of dispersal in cyclic rodent populations , 1992 .

[60]  N. Stenseth,et al.  POPULATION CYCLES IN SMALL MAMMALS: THE PROBLEM OF EXPLAINING THE LOW PHASE , 1998 .

[61]  W. Z. Lidicker,et al.  Do lemmings commit suicide? : beautiful hypotheses and ugly facts , 1997 .

[62]  George Sugihara,et al.  Nonlinear forecasting for the classification of natural time series , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[63]  Kung-Sik Chan,et al.  Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .

[64]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[65]  Ilkka Hanski,et al.  Specialist predators, generalist predators, and the microtine rodent cycle. , 1991 .

[66]  H. Tong On a threshold model , 1978 .

[67]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[68]  P. Turchin,et al.  An Empirically Based Model for Latitudinal Gradient in Vole Population Dynamics , 1997, The American Naturalist.

[69]  N. Stenseth The long-term study of voles, mice and lemmings: homage to Robert Collett. , 1995, Trends in ecology & evolution.

[70]  C. Krebs,et al.  Microtus Population Biology: Demographic Changes in Fluctuating Populations of M. Ochrogaster and M. Pennsylvanicus in Southern Indiana , 1969 .

[71]  Olof Liberg,et al.  Can Vertebrate Predators Regulate Their Prey? , 1984, The American Naturalist.

[72]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[73]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[74]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[75]  Kung-Sik Chan,et al.  On Likelihood Ratio Tests for Threshold Autoregression , 1990 .

[76]  W. Z. Lidicker Solving the Enigma of Microtine “Cycles” , 1988 .

[77]  Peter Turchin,et al.  Chaos in microtine populations , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  N. Stenseth,et al.  A RESPONSE TO SOLVING THE ENIGMA OF POPULATION CYCLES WITH A MULTIFACTORIAL PERSPECTIVE , 1991 .