Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean

Significance Thaumarchaeota are among the most abundant microbial cells in the ocean, but to date, complete genome sequences for marine Thaumarchaeota are lacking. Here, we report the 1.23-Mbp genome of the pelagic ammonia-oxidizing thaumarchaeon “Candidatus Nitrosopelagicus brevis” str. CN25. We present the first proteomic data, to our knowledge, from this phylum, which show a high proportion of proteins translated in oligotrophic conditions. Metagenomic fragment recruitment using data from the open ocean indicate the ubiquitous presence of Ca. N. brevis-like sequences in the surface ocean and suggest Ca. N. brevis as a model system for understanding the ecology and evolution of pelagic marine Thaumarchaeota. Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name “Candidatus Nitrosopelagicus brevis” str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.

[1]  A. Doxey,et al.  Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production , 2014, The ISME Journal.

[2]  D. Stahl,et al.  Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation , 2014, Proceedings of the National Academy of Sciences.

[3]  J. Prosser,et al.  Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds , 2014, FEMS microbiology ecology.

[4]  M. Könneke,et al.  Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation , 2014, Proceedings of the National Academy of Sciences.

[5]  S. Giovannoni,et al.  Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea , 2014, The ISME Journal.

[6]  Alexander Sczyrba,et al.  Genomic and Metabolic Diversity of Marine Group I Thaumarchaeota in the Mesopelagic of Two Subtropical Gyres , 2014, PloS one.

[7]  Haiwei Luo,et al.  Single-cell genomics shedding light on marine Thaumarchaeota diversification , 2014, The ISME Journal.

[8]  W. Wanek,et al.  Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea , 2014, The ISME Journal.

[9]  D. Stahl,et al.  Copper requirements of the ammonia‐oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment , 2013 .

[10]  D. Hinton,et al.  Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases. , 2013, Annual review of microbiology.

[11]  Eugene V Koonin,et al.  Genome reduction as the dominant mode of evolution , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Niels W. Hanson,et al.  Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean , 2013, Proceedings of the National Academy of Sciences.

[13]  A. Spang,et al.  The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. , 2012, Environmental microbiology.

[14]  S. Giovannoni,et al.  Streamlining and Core Genome Conservation among Highly Divergent Members of the SAR11 Clade , 2012, mBio.

[15]  D. Stahl,et al.  Synthesis of Methylphosphonic Acid by Marine Microbes: A Source for Methane in the Aerobic Ocean , 2012, Science.

[16]  D. Karl,et al.  Multiple B-vitamin depletion in large areas of the coastal ocean , 2012, Proceedings of the National Academy of Sciences.

[17]  M. Könneke,et al.  Production of oceanic nitrous oxide by ammonia-oxidizing archaea , 2012 .

[18]  Ryan A. Lesniewski,et al.  Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume , 2012, The ISME Journal.

[19]  R. Lenski,et al.  The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss , 2012, mBio.

[20]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[21]  David J. Reiss,et al.  Niche adaptation by expansion and reprogramming of general transcription factors , 2011, Molecular systems biology.

[22]  A. Santoro,et al.  Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation , 2011, The ISME Journal.

[23]  J. Prosser,et al.  Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil , 2011, Proceedings of the National Academy of Sciences.

[24]  M. McIlvin,et al.  Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea , 2011, Science.

[25]  M. Hecker,et al.  Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont , 2011, Proteomics.

[26]  M. Moran,et al.  Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage , 2011, The ISME Journal.

[27]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[28]  Lloyd M. Smith,et al.  Quantitative proteomic analysis of the chemolithoautotrophic bacterium Nitrosomonas europaea: comparison of growing- and energy-starved cells. , 2011, Journal of proteomics.

[29]  M. Moran,et al.  Quantitative analysis of a deeply sequenced marine microbial metatranscriptome , 2011, The ISME Journal.

[30]  Paul C. Blainey,et al.  Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis , 2011, PloS one.

[31]  A. Spang,et al.  Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. , 2010, Trends in microbiology.

[32]  Patricia P. Chan,et al.  Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea , 2010, Proceedings of the National Academy of Sciences.

[33]  D. Stahl,et al.  Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria , 2009, Nature.

[34]  F. Rohwer,et al.  Explaining microbial population genomics through phage predation , 2009, Nature Reviews Microbiology.

[35]  Weizhong Li,et al.  Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. , 2009, Environmental microbiology.

[36]  David M. Karl,et al.  Aerobic production of methane in the sea , 2008 .

[37]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[38]  Michael Wagner,et al.  A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring , 2008, Proceedings of the National Academy of Sciences.

[39]  Melanie Abecassis,et al.  Ocean's least productive waters are expanding , 2008 .

[40]  P. Chain,et al.  The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. , 2007, Annual review of microbiology.

[41]  Richard Bonneau,et al.  General transcription factor specified global gene regulation in archaea , 2007, Proceedings of the National Academy of Sciences.

[42]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[43]  E. Delong,et al.  Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum , 2006, Proceedings of the National Academy of Sciences.

[44]  M. Lynch Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.

[45]  L. Aluwihare,et al.  Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Maureen L. Coleman,et al.  Genomic Islands and the Ecology and Evolution of Prochlorococcus , 2006, Science.

[47]  W. Whitman,et al.  Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis. , 2005, Archaea.

[48]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[49]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[50]  C. Schleper,et al.  Genomic studies of uncultivated archaea , 2005, Nature Reviews Microbiology.

[51]  H. Westerhoff,et al.  Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite‐sensitive transcription repressor , 2004, Molecular microbiology.

[52]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[53]  Andrew C. Tolonen,et al.  The genome of a motile marine Synechococcus , 2003, Nature.

[54]  Michael Y. Galperin,et al.  Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Larossa,et al.  Seawater Activation of Escherichia coli Gene Promoter Elements: Dominance of rpoS Control , 2001, Microbial Ecology.

[56]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[57]  Robert H. White,et al.  Methanococcus jannaschii Generatesl-Proline by Cyclization ofl-Ornithine , 2001, Journal of bacteriology.

[58]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[59]  David M. Karl,et al.  A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre , 1999, Ecosystems.

[60]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[61]  Harvard Medical School,et al.  Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium , 1993, Journal of bacteriology.

[62]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  W. Nelson,et al.  Metagenomic analysis of a complex marine planktonic thaumarchaeal community from the Gulf of Maine. , 2012, Environmental microbiology.

[64]  E. Delong,et al.  Microbial metatranscriptomics in a permanent marine oxygen minimum zone. , 2012, Environmental microbiology.