ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING

[1]  B. Kalantari A THEOREM OF THE ALTERNATIVE FOR MULTIHOMOGENEOUS FUNCTIONS AND ITS RELATIONSHIP TO DIAGONAL SCALING OF MATRICES , 1996 .

[2]  Leonid Khachiyan,et al.  On the rate of convergence of deterministic and randomized RAS matrix scaling algorithms , 1993, Oper. Res. Lett..

[3]  Leonid Khachiyan,et al.  Diagonal Matrix Scaling and Linear Programming , 1992, SIAM J. Optim..

[4]  Stavros A. Zenios,et al.  A Comparative Study of Algorithms for Matrix Balancing , 1990, Oper. Res..

[5]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[6]  A. Goldberg,et al.  A new approach to the maximum-flow problem , 1988, JACM.

[7]  David London,et al.  On matrices with a doubly stochastic pattern , 1971 .

[8]  D. Djoković,et al.  Note on nonnegative matrices , 1970 .

[9]  Michael Bacharach,et al.  Biproportional matrices & input-output change , 1970 .

[10]  I. Olkin,et al.  Scaling of matrices to achieve specified row and column sums , 1968 .

[11]  R. Brualdi Convex Sets of Non-Negative Matrices , 1968, Canadian Journal of Mathematics.

[12]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[13]  L. Bregman Proof of the convergence of Sheleikhovskii's method for a problem with transportation constraints , 1967 .

[14]  R. Brualdi,et al.  The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .

[15]  L. Mirsky,et al.  The Distribution of Positive Elements in Doubly‐Stochastic Matrices , 1965 .

[16]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[17]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .