Facets of the Fully Mixed Nash Equilibrium Conjecture

AbstractIn this work, we continue the study of the many facets of the Fully Mixed Nash Equilibrium Conjecture, henceforth abbreviated as the $\mathsf{FMNE}$Conjecture, in selfish routing for the special case of n identical users over two (identical) parallel links. We introduce a new measure of Social Cost, defined as the expectation of the square of the maximum congestion on a link; we call it Quadratic Maximum Social Cost. A Nash equilibrium is a stable state where no user can improve her (expected) latency by switching her mixed strategy; a worst-case Nash equilibrium is one that maximizes Quadratic Maximum Social Cost. In the fully mixed Nash equilibrium, all mixed strategies achieve full support.Formulated within this framework is yet another facet of the $\mathsf{FMNE}$Conjecture, which states that the fully mixed Nash equilibrium is the worst-case Nash equilibrium. We present an extensive proof of the $\mathsf{FMNE}$Conjecture; the proof employs a combination of combinatorial arguments and analytical estimations.

[1]  Paul G. Spirakis,et al.  The price of selfish routing , 2001, STOC '01.

[2]  Chryssis Georgiou,et al.  Network uncertainty in selfish routing , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[3]  Marios Mavronicolas,et al.  Nash Equilibria in Discrete Routing Games with Convex Latency Functions , 2004, ICALP.

[4]  Marios Mavronicolas,et al.  A Simple Graph-Theoretic Model for Selfish Restricted Scheduling , 2005, WINE.

[5]  Roger Wattenhofer,et al.  Complexity in geometric SINR , 2007, MobiHoc '07.

[6]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[7]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[8]  Paul G. Spirakis,et al.  The structure and complexity of Nash equilibria for a selfish routing game , 2002, Theor. Comput. Sci..

[9]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Berthold Vöcking,et al.  On the structure and complexity of worst-case equilibria , 2007, Theor. Comput. Sci..

[11]  Panagiota N. Panagopoulou,et al.  Cost Sharing Mechanisms for Fair Pricing of Resource Usage , 2008, Algorithmica.

[12]  I. Kaplansky A Contribution to Von Neumann's Theory of Games , 1945 .

[13]  Christos H. Papadimitriou,et al.  Worst-case Equilibria , 1999, STACS.

[14]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[15]  Martin Gairing,et al.  Selfish Routing with Incomplete Information , 2005, SPAA '05.

[16]  Panagiota N. Panagopoulou,et al.  A Cost Mechanism for Fair Pricing of Resource Usage , 2005, WINE.

[17]  Paul G. Spirakis,et al.  Which Is the Worst-Case Nash Equilibrium? , 2003, MFCS.

[18]  Mimmo Parente,et al.  Existence of Nash Equilibria in Selfish Routing Problems , 2004, SIROCCO.

[19]  W. Uhlmann Vergleich der hypergeometrischen mit der Binomial-Verteilung , 1966 .

[20]  Paul G. Spirakis,et al.  Structure and complexity of extreme Nash equilibria , 2005, Theor. Comput. Sci..

[21]  Rainer Göb Bounds for median and 50 percetage point of binomial and negative binomial distribution , 1994 .

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[23]  Marios Mavronicolas,et al.  A new model for selfish routing , 2004, Theor. Comput. Sci..

[24]  Marios Mavronicolas,et al.  The price of anarchy for polynomial social cost , 2004, Theor. Comput. Sci..

[25]  Eytan Modiano,et al.  Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing , 2007, MobiCom 2007.