Spectroscopy of 39,41Si and the border of the N=28 island of inversion
暂无分享,去创建一个
Z. Podolyák | S. Franchoo | A. Buta | F. Negoita | F. Nowacki | D. Sohler | I. Kuti | B. Bastin | A. Poves | S. Grévy | N. Orr | P. Roussel-Chomaz | D. Baiborodin | Z. Dlouhý | S. Lukyanov | J. Mrázek | J. Angelique | R. Borcea | E. Liénard | M. Stanoiu | O. Sorlin | F. Azaiez | Z. Dombrádi | C. Bourgeois | F. Pougheon | I. Stefan | A. Bürger | L. Nalpas | M. Lazar | A. Drouard | Z. Elekes | R. Chapman | N. Achouri | J. Dalouzy | M. St-Laurent | X. Liang | B. Laurent | L. Gaudefroy | L. Caceres | S. Iacob | Zoltán Elekes | Yu.E. Penionzkhevitch | Z. Dombrádi
[1] A. Buta,et al. Prolate-spherical shape coexistence at N=28 in 44S. , 2010, Physical Review Letters.
[2] L. Gaudefroy. Shell model study of Napprox =28 neutron-rich nuclei , 2010 .
[3] V. Méot,et al. Shell Erosion and Shape Coexistence in (16)43S27. , 2009, Physical review letters.
[4] Y. Blumenfeld,et al. Structure of the N = 27 isotones derived from the Ar 44 ( d , p ) Ar 45 reaction , 2008 .
[5] M. Porquet,et al. Nuclear magic numbers: New features far from stability , 2008, 0805.2561.
[6] F. Nowacki,et al. A New effective interaction for 0 - h-bar - omega shell model calculations in the sdpf valence space , 2007, 0712.2936.
[7] B. A. Brown,et al. Quadrupole collectivity in silicon isotopes approaching neutron number N = 28 , 2007 .
[8] Z. Podolyák,et al. Collapse of the N=28 shell closure in (42)Si. , 2007, Physical review letters.
[9] Y. Blumenfeld,et al. Reduction of the spin-orbit splittings at the n = 28 shell closure. , 2006, Physical review letters.
[10] B. A. Brown,et al. Measurement of excited states in (40)Si and evidence for weakening of the N=28 shell gap. , 2006, Physical review letters.
[11] J. Tímár,et al. Search for particle-hole excitations across the /N=28 shell gap in 45,46 Ar nuclei , 2003 .
[12] C. Miehe,et al. Spectroscopy of Si-34,35 by beta decay: sd-fp shell gap and single particle states , 2001 .
[13] J. Berger,et al. Evolution of the N = 20 and N = 28 shell closures in neutron-rich nuclei , 2000 .
[14] Z. Ren,et al. Shape coexistence and the N = 28 shell closure far from stability , 2000 .
[15] W. Nazarewicz,et al. Shape coexistence and the effective nucleon-nucleon interaction , 1999, nucl-th/9903037.
[16] K. Kemper,et al. Persistence of the N=28 shell closure in neutron-rich nuclei , 1998 .
[17] M. Stoitsov,et al. Relativistic Hartree+Bogoliubov description of the deformed N = 28 region , 1998, nucl-th/9807029.
[18] B. A. Brown,et al. Collectivity in 44S , 1997 .
[19] W. Nazarewicz,et al. Ground-state properties of exotic Si, S, Ar and Ca isotopes , 1996 .
[20] D. C. Radford,et al. ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets , 1995 .
[21] R. Abegg,et al. Study of low-lying levels in 47Ca with the 48Ca(, t)47Ca reaction , 1977 .
[22] J. Rapaport,et al. $sup 46$Ca(d,p)$sup 47$Ca REACTION AT 7-Mev BOMBARDING ENERGY , 1966 .
[23] L. Robledo,et al. Quadrupole collectivity in n ~ 28 nuclei with the angular momentum projected generator coordinate method , 2002 .