Molecular classification and novel targets in hepatocellular carcinoma: recent advancements.

Hepatocellular carcinoma (HCC) is one of most lethal cancers worldwide. Strategic decisions for the advancement of molecular therapies in this neoplasm require a clear understanding of its molecular classification. Studies indicate aberrant activation of signaling pathways involved in cellular proliferation (e.g., epidermal growth factor and RAS/mitogen-activated protein kinase pathways), survival (e.g., Akt/mechanistic target of rapamycin pathway), differentiation (e.g., Wnt and Hedgehog pathways), and angiogenesis (e.g., vascular endothelial growth factor and platelet-derived growth factor), which is heterogeneously presented in each tumor. Integrative analysis of accumulated genomic datasets has revealed a global scheme of molecular classification of HCC tumors observed across diverse etiologic factors and geographic locations. Such a framework will allow systematic understanding of the frequently co-occurring molecular aberrations to design treatment strategy for each specific subclass of tumors. Accompanied by a growing number of clinical trials of molecular targeted drugs, diagnostic and prognostic biomarker development will be facilitated with special attention on study design and with new assay technologies specialized for archived fixed tissues. A new class of genomic information, microRNA dysregulation and epigenetic alterations, will provide insight for more precise understanding of disease mechanism and expand the opportunity of biomarker/therapeutic target discovery. These efforts will eventually enable personalized management of HCC.

[1]  M. Esteller Epigenetic changes in cancer , 2011, F1000 biology reports.

[2]  Xiao‐hui Huang,et al.  MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell , 2010, Medical oncology.

[3]  Shinji Tanaka,et al.  miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. , 2010, Carcinogenesis.

[4]  Jingmin Zhao,et al.  Association between epidermal growth factor 61A/G polymorphism and hepatocellular carcinoma susceptibility in Chinese patients , 2010, Liver international : official journal of the International Association for the Study of the Liver.

[5]  B. Leggett,et al.  Varying etiologies lead to different molecular changes in Australian and South African hepatocellular carcinomas. , 2009, International journal of oncology.

[6]  Shou-Dong Lee,et al.  Risk factors for early and late recurrence in hepatitis B-related hepatocellular carcinoma. , 2009, Journal of hepatology.

[7]  Stephanie Roessler,et al.  MicroRNA expression, survival, and response to interferon in liver cancer. , 2009, The New England journal of medicine.

[8]  S. Thorgeirsson,et al.  Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties , 2009, Oncogene.

[9]  Tina N. Davis,et al.  Proteomic and genetic approaches identify Syk as an AML target. , 2009, Cancer cell.

[10]  F. Zoulim,et al.  Hepatitis C virus-induced hepatocarcinogenesis. , 2009, Journal of hepatology.

[11]  Derek Y. Chiang,et al.  Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. , 2009, Cancer research.

[12]  Gian Luca Grazi,et al.  MicroRNA-221 Targets Bmf in Hepatocellular Carcinoma and Correlates with Tumor Multifocality , 2009, Clinical Cancer Research.

[13]  E. Raymond,et al.  Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. , 2009, The Lancet Oncology.

[14]  X. Wang,et al.  Identification of microRNA‐181 by genome‐wide screening as a critical player in EpCAM–positive hepatic cancer stem cells , 2009, Hepatology.

[15]  Shuhan Sun,et al.  Up‐regulated microRNA‐143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression , 2009, Hepatology.

[16]  J. Yun,et al.  MicroRNA‐195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells , 2009, Hepatology.

[17]  Marek Ancukiewicz,et al.  Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  Kathryn A. O’Donnell,et al.  Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model , 2009, Cell.

[19]  R. Johnstone,et al.  Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors. , 2009, Future oncology.

[20]  Jing Xu,et al.  Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1 , 2009, The Journal of experimental medicine.

[21]  Eun Sung Park,et al.  Identification of potential driver genes in human liver carcinoma by genomewide screening. , 2009, Cancer research.

[22]  Derek Y. Chiang,et al.  Pathogenesis of hepatocellular carcinoma and molecular therapies , 2009, Current opinion in gastroenterology.

[23]  P. Tandon,et al.  Prognostic indicators in hepatocellular carcinoma: a systematic review of 72 studies , 2009, Liver international : official journal of the International Association for the Study of the Liver.

[24]  K. Horimoto,et al.  Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma , 2009, Hepatology.

[25]  Yi Tie,et al.  MicroRNA‐101 regulates expression of the v‐fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma , 2009, Hepatology.

[26]  J. Llovet,et al.  Molecular profiling to predict hepatocellular carcinoma outcome , 2009, Expert review of gastroenterology & hepatology.

[27]  Yi Tie,et al.  miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. , 2009, Cancer letters.

[28]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[29]  Jeffrey S. Morris,et al.  Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  Jian-Rong Yang,et al.  MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. , 2009, Cancer research.

[31]  Xianglin Shi,et al.  Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. , 2009, Journal of hepatology.

[32]  S. Paggi,et al.  Sorafenib in Advanced Hepatocellular Carcinoma , 2008 .

[33]  M. Sherman Recurrence of hepatocellular carcinoma. , 2008, The New England journal of medicine.

[34]  Kenji Ikeda,et al.  Gene expression in fixed tissues and outcome in hepatocellular carcinoma. , 2008, The New England journal of medicine.

[35]  J. Bruix,et al.  Molecular targeted therapies in hepatocellular carcinoma , 2008, Hepatology.

[36]  J. Issa,et al.  Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. , 2008, Carcinogenesis.

[37]  J. Llovet,et al.  Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling , 2008, Molecular Cancer Therapeutics.

[38]  Jianren Gu,et al.  Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma , 2008, International journal of cancer.

[39]  W. Piao,et al.  Hyper-methylation of RIZ1 tumor suppressor gene is involved in the early tumorigenesis of hepatocellular carcinoma. , 2008, Histology and histopathology.

[40]  Richard Simon,et al.  The Use of Genomics in Clinical Trial Design , 2008, Clinical Cancer Research.

[41]  C. Croce,et al.  MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma , 2008, Oncogene.

[42]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[43]  Lixin Wei,et al.  CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma , 2008, International journal of cancer.

[44]  Douglas G Altman,et al.  Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets , 2008, PLoS medicine.

[45]  I. Ng,et al.  Genetic and epigenetic inactivation of T‐cadherin in human hepatocellular carcinoma cells , 2008, International journal of cancer.

[46]  A. Lok,et al.  Hepatitis B virus genotype and mutants: risk factors for hepatocellular carcinoma. , 2008, Journal of the National Cancer Institute.

[47]  Thomas D. Schmittgen,et al.  Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. , 2008, Cancer research.

[48]  M. Toyota,et al.  Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma , 2008, Journal of Gastroenterology.

[49]  J. Llovet,et al.  Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps , 2008, Current opinion in oncology.

[50]  S. Nomoto,et al.  Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver , 2008, International journal of cancer.

[51]  Laura Pelletier,et al.  MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations , 2008, Hepatology.

[52]  Kuo-Bin Li,et al.  Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target* , 2008, Journal of Biological Chemistry.

[53]  D. Gutmann,et al.  Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma. , 2008, International journal of oncology.

[54]  R. Aharonov,et al.  MicroRNAs accurately identify cancer tissue origin , 2008, Nature Biotechnology.

[55]  Krista A. Zanetti,et al.  Identification of metastasis‐related microRNAs in hepatocellular carcinoma , 2008, Hepatology.

[56]  C. Boland,et al.  Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma , 2008, Hepatology.

[57]  Thomas D. Schmittgen,et al.  Association of MicroRNA Expression in Hepatocellular Carcinomas with Hepatitis Infection, Cirrhosis, and Patient Survival , 2008, Clinical Cancer Research.

[58]  T. Fujii,et al.  Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. , 2008, JAMA.

[59]  S. Hirohashi,et al.  Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. , 2007, Gastroenterology.

[60]  J. Llovet Clinical and molecular classification of hepatocellular carcinoma , 2007, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

[61]  Hideaki Kato,et al.  Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas , 2007, Hepatology research : the official journal of the Japan Society of Hepatology.

[62]  H. Sugimoto,et al.  Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma , 2007, British Journal of Cancer.

[63]  Patrick Cahan,et al.  Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. , 2007, Gene.

[64]  S. Thorgeirsson,et al.  Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. , 2007, The Journal of clinical investigation.

[65]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[66]  Michael Karin,et al.  References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S6 Tables S1 to S4 Gender Disparity in Liver Cancer Due to Sex Differences in Myd88-dependent Il-6 Production , 2022 .

[67]  Y. N. Park,et al.  DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. , 2007, International journal of molecular medicine.

[68]  C. Croce,et al.  Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. , 2007, Cancer research.

[69]  G. Lutz,et al.  Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice , 2008, BMC biotechnology.

[70]  H. El‐Serag,et al.  Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. , 2007, Gastroenterology.

[71]  C. Zhang,et al.  Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells , 2007, The Journal of pathology.

[72]  A. Heim,et al.  Epigenetic defects of hepatocellular carcinoma are already found in non-neoplastic liver cells from patients with hereditary haemochromatosis. , 2007, Human molecular genetics.

[73]  K. Koike Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways , 2007, Journal of gastroenterology and hepatology.

[74]  M. Gregor,et al.  Epigenetic combination therapy as a tumor‐selective treatment approach for hepatocellular carcinoma , 2007, Cancer.

[75]  J. Prieto,et al.  New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system , 2007, Liver international : official journal of the International Association for the Study of the Liver.

[76]  Rong Li,et al.  CpG Island Methylator Phenotype Association with Elevated Serum α-Fetoprotein Level in Hepatocellular Carcinoma , 2007, Clinical Cancer Research.

[77]  M. Sporn,et al.  The tumour microenvironment as a target for chemoprevention , 2007, Nature Reviews Cancer.

[78]  Derek Y. Chiang,et al.  Genomics and signaling pathways in hepatocellular carcinoma. , 2007, Seminars in liver disease.

[79]  A. Dupuy,et al.  Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. , 2007, Journal of the National Cancer Institute.

[80]  L. Mariani,et al.  Prevention of hepatocellular carcinoma recurrence with alpha‐interferon after liver resection in HCV cirrhosis , 2006, Hepatology.

[81]  S. Friedman,et al.  Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling. , 2006, Seminars in liver disease.

[82]  M. Honda,et al.  Different signaling pathways in the livers of patients with chronic hepatitis B or chronic hepatitis C , 2006, Hepatology.

[83]  G. Tseng,et al.  Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas , 2006, Hepatology.

[84]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[85]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[86]  S. Ishikawa,et al.  Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays , 2006, Oncogene.

[87]  Ronald A. DePinho,et al.  Hepatocellular carcinoma pathogenesis: from genes to environment , 2006, Nature Reviews Cancer.

[88]  Xin Wei Wang,et al.  Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. , 2006, Cancer cell.

[89]  J. Zucman‐Rossi,et al.  Genetics of hepatocellular tumors , 2006, Oncogene.

[90]  P. Schirmacher,et al.  Dysregulation of growth factor signaling in human hepatocellular carcinoma , 2006, Oncogene.

[91]  C. Bréchot,et al.  Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis , 2006, Oncogene.

[92]  T. Hanai,et al.  Specific Gene-Expression Profiles of Noncancerous Liver Tissue Predict the Risk for Multicentric Occurrence of Hepatocellular Carcinoma in Hepatitis C Virus–Positive Patients , 2006, Annals of Surgical Oncology.

[93]  J. Wands,et al.  Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma , 2006, Hepatology.

[94]  T. Okanoue,et al.  Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues , 2006, Oncogene.

[95]  S. Thorgeirsson,et al.  Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. , 2006, Gastroenterology.

[96]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Thorgeirsson,et al.  Functional genomics of hepatocellular carcinoma , 2006, Hepatology.

[98]  Chang-Zheng Chen,et al.  MicroRNAs as oncogenes and tumor suppressors. , 2005, The New England journal of medicine.

[99]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  P. Philip,et al.  Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[101]  W. Sauerbrei,et al.  Reporting recommendations for tumor marker prognostic studies (REMARK). , 2005, Journal of the National Cancer Institute.

[102]  David Grimes,et al.  Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[103]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[104]  G. Gores,et al.  Hepatocellular carcinoma: molecular pathways and new therapeutic targets. , 2005, Seminars in liver disease.

[105]  Kazuhiko Aoyagi,et al.  Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. , 2005, Cancer research.

[106]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[107]  Alan Ashworth,et al.  Receptor and secreted targets of Wnt-1/β-catenin signalling in mouse mammary epithelial cells , 2005, BMC Cancer.

[108]  S. Thorgeirsson,et al.  Application of comparative functional genomics to identify best-fit mouse models to study human cancer , 2004, Nature Genetics.

[109]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[110]  Kunihiro Nishimura,et al.  Distinct Chromosomal Bias of Gene Expression Signatures in the Progression of Hepatocellular Carcinoma , 2004, Cancer Research.

[111]  S. Thorgeirsson,et al.  Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling , 2004, Hepatology.

[112]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[113]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[114]  Yuh-Shan Jou,et al.  Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. , 2004, Cancer research.

[115]  X. Wang,et al.  Cancer‐associated molecular signature in the tissue samples of patients with cirrhosis , 2004, Hepatology.

[116]  R. Xu,et al.  An update on the molecular genetics of hepatocellular carcinoma. , 2004, Seminars in liver disease.

[117]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[118]  I. Ng,et al.  Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. , 2003, Cancer research.

[119]  J. Ioannidis,et al.  Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment , 2003, The Lancet.

[120]  Susan Branford,et al.  Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. , 2003, The New England journal of medicine.

[121]  J. Herman,et al.  Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. , 2003, The American journal of pathology.

[122]  J. Groopman,et al.  Translational strategies for cancer prevention in liver , 2003, Nature Reviews Cancer.

[123]  S. Kawasaki,et al.  Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. , 2003, Journal of hepatology.

[124]  Jingde Zhu,et al.  Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis , 2002, BMC Cancer.

[125]  S. Thorgeirsson,et al.  Molecular pathogenesis of human hepatocellular carcinoma , 2002, Nature Genetics.

[126]  N. Iizuka,et al.  Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. , 2002, Cancer research.

[127]  D. Botstein,et al.  Gene expression patterns in human liver cancers. , 2002, Molecular biology of the cell.

[128]  Nita Ahuja,et al.  DNA methylation and environmental exposures in human hepatocellular carcinoma. , 2002, Journal of the National Cancer Institute.

[129]  S. Thorgeirsson,et al.  Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer , 2002, Hepatology.

[130]  M. Feitelson,et al.  Genetic mechanisms of hepatocarcinogenesis , 2002, Oncogene.

[131]  M. Uemura,et al.  Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma. , 2002, Cancer letters.

[132]  M S Pepe,et al.  Phases of biomarker development for early detection of cancer. , 2001, Journal of the National Cancer Institute.

[133]  G. Thomas,et al.  Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. , 2001, Gastroenterology.

[134]  Y. Liaw,et al.  Genome-wide hypomethylation in hepatocellular carcinogenesis. , 2001, Cancer research.

[135]  J. Herman,et al.  A gene hypermethylation profile of human cancer. , 2001, Cancer research.

[136]  T. Tsunoda,et al.  Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. , 2001, Cancer research.

[137]  H Ishii,et al.  Expression of mRNA for DNA methyltransferases and methyl‐CpG–binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis , 2001, Hepatology.

[138]  Lanlan Shen,et al.  Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. , 1998, Hepato-gastroenterology.

[139]  G. Dusheiko,et al.  Management of hepatocellular carcinoma. , 1992, Journal of hepatology.

[140]  C. Challen,et al.  Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. , 1992, Journal of hepatology.

[141]  Wei Wu,et al.  MicroRNA-Based Therapeutics for Cancer , 2012, BioDrugs.

[142]  Keun Young Chang,et al.  Hepatitis B virus-X protein recruits histone deacetylase 1 to repress insulin-like growth factor binding protein 3 transcription. , 2009, Virus research.

[143]  J. Bruix,et al.  Novel advancements in the management of hepatocellular carcinoma in 2008. , 2008, Journal of hepatology.

[144]  Esteban Ballestar,et al.  Epigenetic gene regulation in cancer. , 2008, Advances in genetics.

[145]  Riccardo Lencioni,et al.  Design and endpoints of clinical trials in hepatocellular carcinoma. , 2008, Journal of the National Cancer Institute.

[146]  Peter A. Jones,et al.  Epigenetic therapy of cancer: past, present and future , 2006, Nature Reviews Drug Discovery.

[147]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[148]  M. Sherman Hepatocellular carcinoma: epidemiology, risk factors, and screening. , 2005, Seminars in liver disease.

[149]  Rinat Abramovitch,et al.  NF-kappaB functions as a tumour promoter in inflammation-associated cancer. , 2004, Nature.

[150]  M. Honda,et al.  alpha-fetoprotein-producing hepatoma cell lines share common expression profiles of genes in various categories demonstrated by cDNA microarray analysis. , 2001, Hepatology.

[151]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[152]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[153]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.

[154]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.