Mobile robot localization using robust extended H∞ filtering

Abstract In this paper, a novel methodology is provided for accurate localization of a mobile robot using autonomous navigation based on internal and external sensors. A new robust extended H∞ filter is developed to deal with the non-linear kinematic model of the robot and the non-linear distance measurements, together with process and measurement noises. The proposed filter relies on a two-step prediction-correction structure, which is similar to a Kalman filter. Simulations are provided to demonstrate the effectiveness of the proposed method.

[1]  Max Mintz,et al.  A confidence set approach to mobile robot localization , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[2]  Fernando Figueroa,et al.  A Robust Navigation System for Autonomous Vehicles using Ultrasonics , 1993 .

[3]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[4]  Eric Walter,et al.  Robust Autonomous Robot Localization Using Interval Analysis , 2000, Reliab. Comput..

[5]  Chih-Ming Wang Location Estimation and Uncertainty Analysis for Mobile Robots , 1990, Autonomous Robot Vehicles.

[6]  Giuseppe Carlo Calafiore,et al.  Reliable localization using set-valued nonlinear filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[7]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[9]  Qing-hao Meng,et al.  Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar , 2000, Robotica.

[10]  William B. Thompson,et al.  Localizing in unstructured environments: dealing with the errors , 1994, IEEE Trans. Robotics Autom..

[11]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[12]  Giuseppe Oriolo,et al.  A KF-BASED LOCALIZATION ALGORITHM FOR NONHOLONOMIC MOBILE ROBOTS , 1998 .

[13]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[14]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[15]  M. Buehler,et al.  Three-state Extended Kalman Filter for Mobile Robot Localization , 2002 .

[16]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[17]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[18]  Sauro Longhi,et al.  Localization of a wheeled mobile robot by sensor data fusion based on a fuzzy logic adapted Kalman filter , 1998 .

[19]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[20]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..