Interactive Data Mining: A Brief Survey

In the rapidly growing technologies, there exist large amount of data generated, captured and maintained in many industries. There is a need to analyse, and take strategic decision based on the historical data and to update the existing data as per the current need. In this paper, we have conducted a comprehensive survey on the areas related data mining such as Data Extraction, Transformation and Loading; Interactive Data mining; Knowledge Discovery and Content summarization. This survey highlights the challenges of the existing methods, evolutionary growth of technologies. Towards the end, the paper highlights prospective avenues for further research in the area of Interactive Data Mining.

[1]  W. Marsden I and J , 2012 .

[2]  Qin Ding,et al.  Association Rule Mining from XML Data , 2006, DMIN.

[3]  Xindong Wu,et al.  OIDM: online interactive data mining , 2004 .

[4]  Qin Ding,et al.  Frequent Pattern Discovery and Association Rule Mining of XML Data , 2012 .

[5]  Bin Li,et al.  Research on spatial data mining based on uncertainty in Government GIS , 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery.

[6]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[7]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[8]  Peter J. Haas,et al.  Interactive data Analysis: The Control Project , 1999, Computer.

[9]  Farhad Soleimanian Gharehchopogh Approach and review of user oriented interactive data mining , 2010, 2010 4th International Conference on Application of Information and Communication Technologies.

[10]  Susan Craw,et al.  CONSULTANT: providing advice for the machine learning toolbox , 1993 .

[11]  Jörg Sander,et al.  Effective Summarization of Multi-Dimensional Data Streams for Historical Stream Mining , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[12]  Andrew Ehrenberg,et al.  Deconstructing statistical questions - discussion , 1994 .

[13]  Arvid Lundervold,et al.  Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[14]  Hui Deng,et al.  A Survey on Automatic Summarization , 2010, 2010 International Forum on Information Technology and Applications.

[15]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[16]  Ronald R. Yager,et al.  A Multicriteria Approach to Data Summarization Using Concept Ontologies , 2006, IEEE Transactions on Fuzzy Systems.

[17]  Eric R. Ziegel,et al.  Mastering Data Mining , 2001, Technometrics.

[18]  João Gama,et al.  Characterizing the Applicability of Classification Algorithms Using Meta-Level Learning , 1994, ECML.

[19]  L. Kohout,et al.  FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS , 1980 .

[20]  David J. Hand,et al.  Deconstructing Statistical Questions , 1994 .

[21]  Carla E. Brodley,et al.  Applying classification algorithms in practice , 1997, Stat. Comput..

[22]  Ian H. Witten,et al.  Interactive machine learning: letting users build classifiers , 2002, Int. J. Hum. Comput. Stud..

[23]  H.K. Mohammed,et al.  Intelligent query answering with data mining techniques , 2007, 2007 International Conference on Computer Engineering & Systems.

[24]  Jiawei Han,et al.  Intelligent Query Answering by Knowledge Discovery Techniques , 1996, IEEE Trans. Knowl. Data Eng..

[25]  Floor Verdenius,et al.  Applications of Inductive Learning Techniques , 1995 .

[26]  Dan Xu,et al.  Spatial data cube: provides better support for spatial data mining , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[27]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.