Minimax optimal designs via particle swarm optimization methods

Particle swarm optimization (PSO) techniques are widely used in applied fields to solve challenging optimization problems but they do not seem to have made an impact in mainstream statistical applications hitherto. PSO methods are popular because they are easy to implement and use, and seem increasingly capable of solving complicated problems without requiring any assumption on the objective function to be optimized. We modify PSO techniques to find minimax optimal designs, which have been notoriously challenging to find to date even for linear models, and show that the PSO methods can readily generate a variety of minimax optimal designs in a novel and interesting way, including adapting the algorithm to generate standardized maximin optimal designs.

[1]  Jacob Wolfowitz,et al.  Optimum extrapolation and interpolation designs, I , 1964 .

[2]  James M. Whitacre Recent trends indicate rapid growth of nature-inspired optimization in academia and industry , 2011, Computing.

[3]  W K Wong,et al.  Minimax D‐Optimal Designs for the Logistic Model , 2000, Biometrics.

[4]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[5]  Amitava Chatterjee,et al.  Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization , 2006, Comput. Oper. Res..

[6]  James M. Whitacre,et al.  Survival of the flexible: explaining the recent popularity of nature-inspired optimization within a rapidly evolving world , 2011, Computing.

[7]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[8]  James M Whitacre,et al.  Survival of the flexible: explaining the recent dominance of nature-inspired optimization within a rapidly evolving world , 2009, 0907.0332.

[9]  Shu-Kai S. Fan,et al.  A Modified Particle Swarm Optimizer Using an Adaptive Dynamic Weight Scheme , 2007, HCI.

[10]  M. C. Spruill Optimal designs for minimax extrapolation , 1984 .

[11]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[12]  Weng Kee Wong,et al.  Applied Optimal Designs: Berger/Applied Optimal Designs , 2005 .

[13]  J. Wolfowitz,et al.  On a Theorem of Hoel and Levine on Extrapolation Designs , 1965 .

[14]  Stefanie Griesbeck,et al.  econstor Make Your Publications Visible . A Service of zbw , 2005 .

[15]  Holger Dette,et al.  E-optimal designs for the Michaelis–Menten model , 1999 .

[16]  Douglas C. Montgomery,et al.  An Expository Paper on Optimal Design , 2011 .

[17]  A. Levine,et al.  A Problem in Minimax Variance Polynomial Extrapolation , 1966 .

[18]  Wilfried Seidel,et al.  A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model , 2000 .

[19]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[20]  W. Wong,et al.  Minimax d-optimal designs for item response theory models , 2000 .

[21]  M. C. Spruill Optimal designs for multivariate interpolation , 1990 .

[22]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[23]  Maciej Patan,et al.  Optimum Design of Experiments for Enzyme Inhibition Kinetic Models , 2011, Journal of biopharmaceutical statistics.

[24]  Weng Kee Wong,et al.  Dual-Objective Bayesian Optimal Designs for a Dose-Ranging Study , 2000 .

[25]  R. Sitter Robust designs for binary data , 1992 .

[26]  Drew Seils,et al.  Optimal design , 2007 .

[27]  W K Wong,et al.  Multiple-objective optimal designs. , 1998, Journal of biopharmaceutical statistics.

[28]  W. Wong,et al.  Optimal minimax designs for prediction in heteroscedastic models , 1998 .

[29]  R. Dennis Cook,et al.  Heteroscedastic G-optimal Designs , 1993 .

[30]  Connie M. Borror,et al.  Generating and Assessing Exact G-Optimal Designs , 2010 .

[31]  Weng Kee Wong,et al.  On the Equivalence of Constrained and Compound Optimal Designs , 1994 .

[32]  Weng Kee Wong,et al.  An algorithmic construction of optimal minimax designs for heteroscedastic linear models , 2000 .

[33]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[34]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[35]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[36]  R. H. Farrell,et al.  Optimum multivariate designs , 1967 .

[37]  Weng Kee Wong,et al.  A unified approach to the construction of minimax designs , 1992 .

[38]  J. Wolfowitz,et al.  Optimum extrapolation and interpolation designs II , 1964 .

[39]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[40]  N. Z. Shor,et al.  The Subgradient Method , 1985 .

[41]  Michel Broniatowski,et al.  Optimality and bias of some interpolation and extrapolation designs , 2007 .

[42]  Nripes Kumar Mandal On Robust Designs , 1989 .

[43]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[44]  Weng Kee Wong,et al.  Applied Optimal Designs , 2006 .

[45]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[46]  Ray-Bing Chen,et al.  Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model. , 2008, Statistics & probability letters.

[47]  W Zhu,et al.  Bayesian optimal designs for estimating a set of symmetrical quantiles. , 2001, Statistics in medicine.