暂无分享,去创建一个
[1] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[2] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[3] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[4] Hillel Tal-Ezer,et al. On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..
[5] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[6] J. Verwer,et al. Unconditionally stable integration of Maxwell's equations , 2009 .
[7] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[8] L. Knizhnerman,et al. Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations , 2019, Keldysh Institute Preprints.
[9] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[10] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[11] Stefan Güttel,et al. Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..
[12] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[13] Mike A. Botchev,et al. ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations , 2018, J. Comput. Appl. Math..
[14] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[15] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[16] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[17] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[18] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[19] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[20] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[21] Christian Wieners,et al. Efficient time integration for discontinuous Galerkin approximations of linear wave equations , 2015 .
[22] Mike A. Botchev,et al. Exponential Krylov time integration for modeling multi-frequency optical response with monochromatic sources , 2017, J. Comput. Appl. Math..
[23] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[24] Marlis Hochbruck,et al. Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..
[25] E. Celledoni,et al. A Krylov projection method for systems of ODEs , 1997 .
[26] Stefan Güttel,et al. Rational Krylov Methods for Operator Functions , 2010 .
[27] Hans De Raedt,et al. New Unconditionally Stable Algorithms to Solve the Time-Dependent Maxwell Equations , 2002, International Conference on Computational Science.
[28] Jörg Niehoff,et al. Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren , 2007 .
[29] Stefan Güttel,et al. Three-Dimensional Transient Electromagnetic Modeling Using Rational Krylov Methods , 2015 .
[30] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[31] L. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .
[32] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[33] W. Auzinger,et al. Computable upper error bounds for Krylov approximations to matrix exponentials and associated φ -functions. , 2018, BIT. Numerical mathematics.
[34] W. Auzinger,et al. Computable upper error bounds for Krylov approximations to matrix exponentials and associated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{- , 2018, BIT Numerical Mathematics.
[35] Marlis Hochbruck,et al. Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .
[36] Mike A. Botchev,et al. Krylov subspace exponential time domain solution of Maxwell's equations in photonic crystal modeling , 2016, J. Comput. Appl. Math..
[37] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[38] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[39] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[40] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..