An identity-based proxy ring signature scheme from bilinear pairings

We propose an identity-based proxy ring signature scheme from bilinear pairings which combines the advantages of proxy signature and of ring signature. Furthermore, our scheme can prevent the original signer form generating the proxy ring signature, thus the profits of the proxy signer are guaranteed. We introduce bilinear pairings to minimize the computation overhead and to improve the related performance of our scheme. As compared with Zhang's scheme, our scheme is a computational efficiency improvement for signature verification because the computational cost of bilinear pairings required is reduced form O(n) to O(1). In addition, the proxy ring signature presented in This work is signer ambiguous, nonforgeable, verifiable, nonrepudiable and identifiable.

[1]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[2]  Alexandra Boldyreva,et al.  Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman-Group signature scheme , 2002 .

[3]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[4]  Tzonelih Hwang,et al.  On Zhang's Nonrepudiable Proxy Signature Schemes , 1998, ACISP.

[5]  Yang Zongkai,et al.  A new fair micropayment system based on hash chain , 2004, IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004.

[6]  Dongho Won,et al.  Proxy signatures, Revisited , 1997, ICICS.

[7]  Eiji Okamoto,et al.  Proxy signatures for delegating signing operation , 1996, CCS '96.

[8]  Yael Tauman Kalai,et al.  How to Leak a Secret: Theory and Applications of Ring Signatures , 2001, Essays in Memory of Shimon Even.

[9]  Kwangjo Kim,et al.  ID-Based Blind Signature and Ring Signature from Pairings , 2002, ASIACRYPT.

[10]  Kan Zhang,et al.  Threshold Proxy Signature Schemes , 1997, ISW.

[11]  M. Mambo,et al.  Proxy Signatures: Delegation of the Power to Sign Messages (Special Section on Information Theory and Its Applications) , 1996 .

[12]  Reihaneh Safavi-Naini,et al.  New Proxy Signature, Proxy Blind Signature and Proxy Ring Signature Schemes from Bilinear Pairing , 2003, IACR Cryptol. ePrint Arch..

[13]  Steven D. Galbraith,et al.  Implementing the Tate Pairing , 2002, ANTS.

[14]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.