Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime

Fano resonance (FR) is routinely observed in three-dimensional symmetric metamaterials (MMs) consisting of elliptical nanoholes array (ENA) embedding through metal–dielectric–metal (MDM) multilayers. It is shown theoretically that a square periodic ENA perforating through MDM layers produces an FR response in the near infrared regime. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive–capacitive resonance) induced by the MDM multilayers. Notably, one can achieve a narrower FR when the elliptical nanoholes occupy the sites of a rectangular lattice, owing to the interaction of the magnetic resonances with the enhanced electric resonances. Moreover, a higher varying degree of the lattice constant along the horizontal direction allows for an FR with a higher value of the quality factor and the tuning of the amplitude and the resonant frequency of the transparency window. Such an FR created by the interference among the magnetic and electric dipolar resonances opens up an alternative way of forming a sharp FR in the symmetric multilayer MMs, and could be exploited for sensing. (Some figures may appear in colour only in the online journal)

[1]  Role of coupling of discrete breathers in split-ring-resonator-based metamaterials , 2012 .

[2]  D. Lippens,et al.  Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies , 2012 .

[3]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[4]  P. Braun,et al.  Large‐Area Low‐Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing , 2012, Advanced materials.

[5]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[6]  Martin J Cryan,et al.  Study of incident angle dependence for dual-band double negative-index material using elliptical nanohole arrays. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  U. Kreibig,et al.  Substrate effect on the optical response of silver nanoparticles , 2004 .

[8]  A. Ehresmann,et al.  Photoionization of Kr near the 4s threshold: IV. Photoionization through the autoionization of doubly-excited states , 1994 .

[9]  Sung Gug Kim,et al.  Observation of trapped-modes excited in double-layered symmetric electric ring resonators , 2012 .

[10]  T. Tahmasebi,et al.  Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization , 2011 .

[11]  Harald Giessen,et al.  Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials , 2008 .

[12]  Shuang Zhang,et al.  Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. , 2006, Optics express.

[13]  Santanu Das,et al.  Rectification of energy transport in nonlinear metamaterials via ratchets , 2013 .

[14]  Kevin J. Malloy,et al.  Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies , 2006 .

[15]  Stefan Linden,et al.  Bianisotropic Photonic Metamaterials , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Ekmel Ozbay,et al.  Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Nikolay I. Zheludev,et al.  Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency , 2009 .

[18]  J. Kong Electromagnetic Wave Theory , 1986 .

[19]  H. Liu,et al.  Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. , 2006, Optics express.

[20]  P Lalanne,et al.  Theory of fishnet negative-index optical metamaterials. , 2011, Physical review letters.

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  Allan D. Boardman,et al.  Pioneers in metamaterials: John Pendry and Victor Veselago , 2011 .

[23]  A. Danner,et al.  Photorealistic rendering of a graded negative-index metamaterial magnifier , 2012 .

[24]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[25]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[26]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[27]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[28]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[29]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[30]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[31]  Andrew M. Moran,et al.  Nonlinear optical signatures of ultraviolet light-induced ring opening in α-terpinene , 2013 .

[32]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[33]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[34]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[35]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[36]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[37]  F. J. Rodríguez-Fortuño,et al.  Double-negative polarization-independent fishnet metamaterial in the visible spectrum. , 2009, Optics letters.

[38]  Yuri S. Kivshar,et al.  Tunable fishnet metamaterials infiltrated by liquid crystals , 2010, 1004.0802.

[39]  Peng Wang,et al.  Fabrication of negative index materials using dielectric and metallic composite route , 2008 .

[40]  Pei Ding,et al.  Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. , 2013, Optics express.

[41]  K. Choudhary,et al.  Fano resonance due to discrete breather in nonlinear Klein–Gordon lattice in metamaterials , 2012 .

[42]  D. Mandal,et al.  Quantum breathers in Klein-Gordon lattice: Non-periodic boundary condition approach , 2011 .

[43]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[44]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[45]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[46]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[47]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[48]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[49]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[50]  F. J. Rodríguez-Fortuño,et al.  Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays , 2009 .

[51]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[52]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[53]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[54]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[55]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[56]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[57]  V. Shalaev Optical negative-index metamaterials , 2007 .

[58]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[59]  M. Wegener,et al.  Design-related losses of double-fishnet negative-index photonic metamaterials. , 2007, Optics express.

[60]  D. Werner,et al.  Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings. , 2013, Optics express.

[61]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[62]  Kamal Choudhary,et al.  Klein-Gordon equation approach to nonlinear split-ring resonator based metamaterials: One-dimensional systems , 2011 .