A posteriori error estimates for discontinuous Galerkin methods for the generalized Korteweg-de Vries equation

We construct, analyze and numerically validate a posteriori error estimates for conservative discontinuous Galerkin (DG) schemes for the Generalized Korteweg-de Vries (GKdV) equation. We develop the concept of dispersive reconstruction, i.e., a piecewise polynomial function which satisfies the GKdV equation in the strong sense but with a computable forcing term enabling the use of a priori error estimation techniques to obtain computable upper bounds for the error. Both semidiscrete and fully discrete approximations are treated.

[1]  Lars B. Wahlbin A Dissipative Galerkin Method for the Numerical Solution of First Order Hyperbolic Equations , 1974 .

[2]  Osamu Inoue,et al.  Fourier expansion solution of the Korteweg-de Vries equation , 1980 .

[3]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[4]  Ragnar Winther,et al.  A conservative finite element method for the Korteweg-de Vries equation , 1980 .

[5]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[6]  G. Burton Sobolev Spaces , 2013 .

[7]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[8]  Yulong Xing,et al.  Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation , 2013, Math. Comput..

[9]  J. Bona Model Equations for Waves in Nonlinear Dispersive Systems , 2010 .

[10]  A. C. Vliegenthart,et al.  On finite-difference methods for the Korteweg-de Vries equation , 1971 .

[11]  M. Ablowitz,et al.  Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations , 1984 .

[12]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[13]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..

[14]  H. Schamel,et al.  The application of the spectral method to nonlinear wave propagation , 1976 .

[15]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. 1V. numerical modified Korteweg-de Vries equation , 1988 .

[16]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[17]  Ohannes A. Karakashian,et al.  On optimal high-order in time approximations for the Korteweg-de Vries equation , 1990 .

[18]  Charalambos Makridakis,et al.  Analysis for Time Discrete Approximations of Blow-up Solutions of Semilinear Parabolic Equations , 2011, SIAM J. Numer. Anal..

[19]  Omar Lakkis,et al.  A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..

[20]  Chi-Wang Shu,et al.  Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations , 2007 .

[21]  Eberhard Bänsch,et al.  A Posteriori Error Control for Fully Discrete Crank-Nicolson Schemes , 2012, SIAM J. Numer. Anal..

[22]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[24]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[25]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  Ohannes A. Karakashian,et al.  On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation , 1985 .

[27]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical , 1984 .

[30]  Ohannes A. Karakashian,et al.  Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .

[31]  M. E. Alexander,et al.  Galerkin methods applied to some model equations for non-linear dispersive waves , 1979 .