Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2 [M = octahedral, divalent metal; tcm– = tricyanomethanide, C(CN)3–] and the sheet structures of [M(tcm)2(EtOH)2] (M = Co or Ni)

The isomorphous structures of M(tcm)2 [MII = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd or Hg; tcm– = tricyanomethanide, C(CN)3–] contain two interpenetrating rutile-related networks generated by octahedral six-connecting metal ions and trigonal three-connecting tcm– anions. The detailed variable temperature and variable field magnetic properties of this series of high-spin complexes generally point to the existence of very weak intraframework coupling with no evidence for long range magnetic order or interframework effects. The compound Cr(tcm)2 is the most strongly coupled and displays a field independent maximum in susceptibility at 14.5 K and a J value of –1.6 cm–1 (using a –2JS1·S2 Heisenberg chain model); Co(tcm)2 displays high temperature magnetic moments typical of essentially uncoupled octahedral centres but with a most unusual field dependence in µCo observed below 10 K, probably due to very weak ferromagnetic coupling, and an Msat value in high fields, at 2 K, which is significantly less than that expected for S = 3/2. Doping of M(tcm)2 with another M′ member of the series leads to a crystal structure isomorphous with M(tcm)2 in which the dopant metal M′ occupies the M site in a random fashion. The resultant magnetism is simply intermediate between those of the parent phases. The isomorphous structures of [M(tcm)2(EtOH)2] (MII = Co or Ni) contain pseudo square-grid sheets in which the tcm– ligands are each co-ordinated to two metal ions and act as a kinked bridge. Each metal is co-ordinated to four tcm– anions in an equatorial arrangement and to two axial ethanol ligands. Extensive intrasheet hydrogen bonding exists between the ethanol molecules and the unco-ordinated nitrile of the tcm– bridges.

[1]  S. Batten,et al.  Ni(tpt)(NO3 )2 -A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. , 1999, Angewandte Chemie.

[2]  Joel S. Miller,et al.  Buckled-layered Structure of Zinc Dicyanamide, Zn(II)[N(CN)(2)](2). , 1998, Inorganic chemistry.

[3]  P. A. Jackson,et al.  A Robust (10,3)-a Network Containing Chiral Micropores in the AgI Coordination Polymer of a Bridging Ligand that Provides Three Bidentate Metal-Binding Sites. , 1998, Angewandte Chemie.

[4]  A. Epstein,et al.  Structure and Magnetic Ordering of MII[N(CN)2]2 (M = Co, Ni)† , 1998 .

[5]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[6]  S. Batten,et al.  Synthesis and Rutilelike Structure of [Cd(tcm)(hmt)(H2O)](tcm) (tcm- = Tricyanomethanide, C(CN)3-; hmt = Hexamethylenetetramine) , 1998 .

[7]  C. Bellitto,et al.  Synthesis and Properties of New Chromium(II) Organophosphonates , 1998 .

[8]  A. Caneschi,et al.  Spin Polarization and Ferromagnetism in Two‐Dimensional Sheetlike Cobalt(II) Polymers: [Co(L)2(NCS)2] (L=Pyrimidine or Pyrazine) , 1998 .

[9]  L. Jäger,et al.  Darstellung und spektroskopische Charakterisierung von Kupfer(II)‐ und Nickel(II)‐tricyanmethanid‐Komplexen mit Imidazol‐Derivaten – Kristallstruktur von [Cu{C(CN)3}2(2‐meiz)2] , 1998 .

[10]  C. Kepert,et al.  Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}-, , 1998 .

[11]  K. Inoue,et al.  Tacticity versus dimension of the extended structures in the crystals of heterospin magnets made of transition-metal complexes with the poly(aminoxyl) radical , 1998 .

[12]  Stuart R. Batten,et al.  Structures of [Ag(tcm)], [Ag(tcm)(phz)1/2] and [Ag(tcm)(pyz)] (tcm=tricyanomethanide, C(CN)3-, phz=phenazine, pyz=pyrazine) , 1998 .

[13]  Alexander J. Blake,et al.  ANION CONTROL IN BIPYRIDYLSILVER(I) NETWORKS : A HELICAL POLYMERIC ARRAY , 1997 .

[14]  S. Kitagawa,et al.  Two Types of New Polymeric Copper(I) Complexes of Pyrazinecarboxamide Having Channel and Helical Structures , 1997 .

[15]  S. Batten,et al.  Structure and Magnetism of a Bimetallic Pentanuclear Cluster [(Ni(bpm)2)3(Fe(CN)6)2]·7H2O (bpm = Bis(1-pyrazolyl)methane)). The Role of the Hydrogen-Bonded 7H2O “Cluster” in Long-Range Magnetic Ordering , 1997 .

[16]  Fei Liu,et al.  Coordination Networks Based on Tetrahedral Silane Building Blocks: Influence of the Anion on Structures Adopted by Ag+−Si(p-C6H4CN)4 Arrays , 1997 .

[17]  F. Mautner,et al.  A New Family of High-Dimensional Molecular Magnets Built from the Manganese-Azido System. Syntheses, Structures, and Magnetic Characterization of Two New Ferro-Antiferromagnetic Two-Dimensional Complexes. , 1997, Inorganic chemistry.

[18]  D. Proserpio,et al.  A Novel 3D Three-Connected Cubic Network Containing [Ag(6)(hmt)(6)](6+) Hexagonal Units (hmt = Hexamethylenetetramine). , 1997, Inorganic chemistry.

[19]  S. Batten,et al.  Solvolysis of [B(C6H5)4]− in Methanol To Give the Chiral Coordination Polymer Cd(tcm)[B(OMe)4] · xMeOH, x ≈ 1.6 , 1997 .

[20]  Hailian Li,et al.  Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network , 1997 .

[21]  F. Laschi,et al.  New Adducts of Dirhodium(II) Formamidinate Complexes with Polycyano Acceptor Molecules. X-ray Crystal Structure of the Tricyanomethanide Complex Rh(2)(form)(4)[C(CN)(3)] (form = N,N'-Di-p-tolylformamidinate). , 1997, Inorganic chemistry.

[22]  T. Groy,et al.  Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid , 1996 .

[23]  Brendan F. Abrahams,et al.  A Cubic (3,4)‐Connected Net with Large Cavities in Solvated [Cu3(tpt)4](ClO4)3 (tpt = 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐triazine) , 1996 .

[24]  D. Venkataraman,et al.  Exchange Properties of the Three-Dimensional Coordination Compound 1,3,5-Tris(4-ethynylbenzonitrile)benzene·AgO3SCF3 , 1996 .

[25]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[26]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .

[27]  G. Girolami,et al.  Molecular Magnets Constructed from Cyanometalate Building Blocks , 1995 .

[28]  Stuart R. Batten,et al.  Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = .apprx.3/4C2H2Cl4.cntdot.3/4CH3OH or .apprx.3/2CHCl3.cntdot.1/3CH3OH , 1995 .

[29]  Jeffrey S. Moore,et al.  Spontaneous assembly of a hinged coordination network , 1995, Nature.

[30]  S. Batten,et al.  2,4,6-Tri(4-pyridyl)-1,3,5-triazine as a 3-Connecting Building Block for Infinite Nets† , 1995 .

[31]  O. Kahn Magnetism of Heterobimetallics: Toward Molecular-Based Magnets , 1995 .

[32]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[33]  M. Verdaguer,et al.  High-Tc Molecular-Based Magnets: Ferrimagnetic Mixed-Valence Chromium(III)-Chromium(II) Cyanides with Tc at 240 and 190 Kelvin , 1993, Science.

[34]  M. Hardie,et al.  Topological rearrangement within a single crystal from a honeycomb cadmium cyanide [Cd(CN)2]n 3D net to a diamond net , 1992 .

[35]  L. Jäger,et al.  Pseudohalogenverbindungen. Darstellung und Reaktionsverhalten von Alkyl- und Arylammoniumdicyanamiden, -tricyammethaniden und -dicyanmethanidoaceta-ten [RNH3]X (X N(CN)2, C(CN)3, C(CN)2C(O)CH3)† , 1992 .

[36]  K. Brodersen,et al.  Quecksilberverbindungen mit Cyancarbanionen. I. Synthese und Kristallstruktur von Diquecksilber(I)-bis(tricyanmethanid) , 1992 .

[37]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[38]  Brendan F. Abrahams,et al.  The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and x-ray crystal structures of Cd(CN)5/3(OH)1/3.1/3(C6H12N4), Cd(CN)2.1/3(C6H12N4), and Cd(Cn)2.2/3H2O.tBuOH (C6H12N4 = hexamethylenetetramine) revealing two topologically equivalent but geometrically different , 1991 .

[39]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[40]  D. N. Kravtsov,et al.  Synthesis and crystal structure of bis(triphenylphosphine)gold tricyanomethanide, [(PPh3)2Au]+[C(CN)3]− , 1989 .

[41]  Joel S. Miller,et al.  Single-crystal EPR of the thermally excited triplet state of the hexaazaoctadecahydrocoronene dication , 1989 .

[42]  J. Schlueter,et al.  Synthesis of the new organic metal (ET)/sub 2/C(CN)/sub 3/ characterization of its metal-insulator phase transition at /approx/ 180 K , 1989 .

[43]  Joel S. Miller,et al.  Crystal and molecular structure of the charge transfer salt of decamethylferrocenium and tricyanomethanide: [Fe(C5Me5)2]+•[C(CN)3]−. The electronic structure and spectra of [C(CN)3]− , 1986 .

[44]  B. Kennedy,et al.  Magnetic properties and zero-field splitting in high-spin manganese(III) complexes. 1. Mononuclear and polynuclear Schiff-base chelates , 1985 .

[45]  W. Scheidt,et al.  PREPARATION AND PHYSICAL AND STEREOCHEMICAL CHARACTERIZATION OF THE TRICYANOMETHANIDE SALT OF 5,10,15,20-TETRAPHENYLPORPHINATOIRON(III). A SIX-COORDINATE INTERMEDIATE-SPIN COMPLEX , 1978 .

[46]  I. Bkouche-Waksman,et al.  Structure du composé CoCl2.2,5C2H5OH et classification de composés d'addition de métaux divalents , 1977 .

[47]  H. Köhler,et al.  Metall-Pseudohalogenide. 28. Notiz zur IR-Absorption der koordinationspolymeren Metalltricyanmethanide M(C(CN)3)2 im Bereich von 200-400 cm?1 , 1977 .

[48]  Y. M. Chow,et al.  The crystal structures of dimethylthallium tricyanomethide and dimethylthallium dicyanamide , 1975 .

[49]  T. Tamamura,et al.  Organic Charge Transfer Salts. II. Emission Spectrum of an Organic Charge Transfer Salt, 2,4,6-Triphenylthiopyrylium–1,1,3,3-tetracyanopropenide , 1974 .

[50]  T. Tamamura,et al.  Organic Charge Transfer Salts. III. Photoconductive and Magnetic Properties of Organic Charge Transfer Salts , 1974 .

[51]  J. R. Witt,et al.  The crystal structure of potassium tricyanomethide, KC(CN)3 , 1971 .

[52]  H. Mikawa,et al.  Organic Charge Transfer Salts; Absorption Spectra of Salts between the Pyrylium or Thiopyrylium Cation and the 1,1,3,3- Tetracyanopropenide or Tricyanomethanide Anion , 1970 .

[53]  L. Ehrenberg,et al.  The Crystal Structure of Sodium Tricyanomethanide, NaC(CN)3. , 1967 .

[54]  H. Köhler,et al.  Beiträge zur Chemie des Dicyanamid‐ und des Tricyanmethanid‐Ions. IV. Kobalt(II)‐dicyanamid‐und ‐tricyanmethanid‐Komplexe , 1966 .

[55]  H. Köhler Beitrage zur Chemie des Dicyanamid‐ und des Tricyanmethanidions. I. Die Bildung von Übergangsmetall‐Pyridin‐Komplexen , 1964 .

[56]  C. Bugg,et al.  An x-ray diffraction study of nonplanar carbanion structures. , 1964 .

[57]  P. Andersen,et al.  X-ray Investigation of Potassium Tricyano-methanide (KC(CN)3) , 1963, Nature.

[58]  R. H. Boyd CYANOCARBON CHEMISTRY. XXIII. THE IONIZATION BEHAVIOR OF CYANOCARBON ACIDS , 1963 .

[59]  H. Mower,et al.  Tricyanomethane (Cyanoform), Carbamyldicyanomethane, and Their Derivatives , 1962 .

[60]  R. H. Boyd THE STRENGTHS OF CYANOCARBON ACIDS AND AN H-ACIDITY SCALE FOR CONCENTRATED ACID SOLUTIONS , 1961 .

[61]  W. Middleton,et al.  Cyanocarbon Chemistry. V.1 Cyanocarbon Acids and their Salts , 1958 .

[62]  D. Cromer,et al.  The Structures of Anatase and Rutile , 1955 .

[63]  R. Pearson,et al.  Rates of Ionization of Pseudo Acids.1 IV. Relation between Rates and Equilibria , 1953 .