Micelles with ultralow critical micelle concentration as carriers for drug delivery

Conventional micellar carriers disassemble into free surfactants when diluted at concentrations below the critical micelle concentration (CMC). This limits the bioavailability in vivo of injected hydrophobic drugs encapsulated in micellar systems. Here, we show that a micelle comprising a superhydrophilic zwitterionic polymer domain and a superhydrophobic lipid domain has an undetectable CMC below 10−6 mM—a value that is orders of magnitude lower than the CMCs (>10−3 mM) of typical micellar systems. We also show that zwitterionic moieties or zwitterionic polymers added to a micelle solution stabilize the micelles at concentrations below their inherent CMC. In a mouse model of melanoma, ultralow-CMC micelles encapsulating docetaxel led to the complete eradication of tumours, whereas conventional docetaxel micellar formulations did not reverse tumour growth. Ultralow-CMC micelles might become next-generation carriers for drug delivery.Polymer–lipid micelles with an ultralow undetectable critical micelle concentration make ultrastable drug carriers that significantly enhance therapeutic outcomes in a mouse model of melanoma.

[1]  N. Turro,et al.  Fluorescence Probes for Critical Micelle Concentration , 2001 .

[2]  Eric J. Gomez,et al.  Tunable Protease-Activatable Virus Nanonodes , 2014, ACS nano.

[3]  A. Orlando,et al.  COVID-19 in patients with inflammatory bowel disease: A systematic review of clinical data , 2020, Digestive and Liver Disease.

[4]  Ronnie H. Fang,et al.  Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform , 2011, Proceedings of the National Academy of Sciences.

[5]  N. Steinmetz,et al.  Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. , 2015, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[6]  Vladimir P Torchilin,et al.  Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. , 2004, Advanced drug delivery reviews.

[7]  M. Yessine,et al.  Preparation, characterization, cytotoxicity and biodistribution of docetaxel-loaded polymeric micelle formulations , 2005 .

[8]  T. Allen,et al.  Insertion of poly(ethylene glycol) derivatized phospholipid into pre‐formed liposomes results in prolonged in vivo circulation time , 1996, FEBS letters.

[9]  Craig J Hawker,et al.  Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. , 2006, Chemical Society reviews.

[10]  K. Jørgensen,et al.  Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length , 2001 .

[11]  Vito Pistoia,et al.  Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy , 2012, Science Translational Medicine.

[12]  Shaoyi Jiang,et al.  Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles , 2012 .

[13]  Gregory L. Szeto,et al.  Structure-based programming of lymph-node targeting in molecular vaccines , 2014, Nature.

[14]  Heinz-Bernhard Kraatz,et al.  Polymeric micelles as drug delivery vehicles , 2014 .

[15]  G. Schwartz,et al.  Chemotherapy in the management of advanced cutaneous malignant melanoma. , 2013, Clinics in dermatology.

[16]  D. Irvine,et al.  Bio-inspired, bioengineered and biomimetic drug delivery carriers , 2011, Nature Reviews Drug Discovery.

[17]  R. Chammas,et al.  Emerging targets for combination therapy in melanomas , 2015, FEBS letters.

[18]  R. Averineni,et al.  In Vitro and In Vivo Tumor Growth Inhibition by Glutathione Disulfide Liposomes , 2017, Cancer growth and metastasis.

[19]  Li Tang,et al.  Smart chemistry in polymeric nanomedicine. , 2014, Chemical Society reviews.

[20]  M. Bissery,et al.  Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: Preclinical experience. , 1995, Anti-cancer drugs.

[21]  Ick Chan Kwon,et al.  Engineered polymers for advanced drug delivery. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[22]  Shutao Guo,et al.  Nanoparticles containing insoluble drug for cancer therapy. , 2014, Biotechnology advances.

[23]  N. Turro,et al.  Fluorescence probes for critical micelle concentration determination. , 1985, Langmuir : the ACS journal of surfaces and colloids.

[24]  H. Klok,et al.  Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. , 2001, Advanced drug delivery reviews.

[25]  M. Nakagaki,et al.  Estimation of critical micelle concentrations of lysolecithins with fluorescent probes. , 1986 .

[26]  Pedro M. Valencia,et al.  Targeted Polymeric Therapeutic Nanoparticles: Design, Development and Clinical Translation , 2012 .

[27]  Nikos Hadjichristidis,et al.  Block Copolymers: Synthetic Strategies, Physical Properties, and Applications , 2002 .

[28]  K. Miyajima,et al.  Quantitative analysis of hemolytic action of lysophosphatidylcholines in vitro: effect of acyl chain structure. , 1988, Chemical & pharmaceutical bulletin.

[29]  Teruo Okano,et al.  Preparation and Characterization of the Micelle-Forming Polymeric Drug Indomethacin-lncorporated Polyfethylene oxide)-Poly(β-benzyl L-aspartate) Block Copolymer Micelles , 1996 .

[30]  K. Ishihara,et al.  Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. , 2005, Biomacromolecules.

[31]  R. Kerbel,et al.  Effective Treatment of Advanced Human Melanoma Metastasis in Immunodeficient Mice Using Combination Metronomic Chemotherapy Regimens , 2009, Clinical Cancer Research.

[32]  J. Rodríguez-Hernández,et al.  Toward 'smart' nano-objects by self-assembly of block copolymers in solution , 2005 .

[33]  G. Vayssilov,et al.  Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. , 2019, International journal of pharmaceutics.

[34]  A. Oosterom,et al.  Docetaxel (Taxotere), a review of preclinical and clinical experience. Part II: Clinical experience. , 1995 .

[35]  Kinam Park,et al.  Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging , 2008, Proceedings of the National Academy of Sciences.

[36]  G. Schreiber,et al.  Regressions and cures of melanoma xenografts following treatment with monoclonal antibody beta-lactamase conjugates in combination with anticancer prodrugs. , 1995, Cancer research.

[37]  H. Weltzien Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. , 1979, Biochimica et biophysica acta.

[38]  D. Newman,et al.  Studies on the active site of succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase. Characterization using analogs of tetrahydrodipicolinate. , 1986, The Journal of biological chemistry.

[39]  K. Yao,et al.  Toward an understanding of thermoresponsive transition behavior of hydrophobically modified N-isopropylacrylamide copolymer solution , 2005 .

[40]  A. V. van Oosterom,et al.  Docetaxel (Taxotere), a review of preclinical and clinical experience. Part II: Clinical experience. , 1995, Anti-cancer drugs.

[41]  Jichun Han,et al.  Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis , 2016, Scientific Reports.

[42]  G. Hortobagyi,et al.  Docetaxel for treatment of solid tumours: a systematic review of clinical data. , 2005, The Lancet. Oncology.

[43]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[44]  Yuhua Wang,et al.  Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[45]  Kumiko Okada,et al.  Salt Effect on Critical Micelle Concentrations of Nonionic Surfactants, N-Acyl-N-methylglucamides (MEGA-n). , 2001, Journal of colloid and interface science.

[46]  C. Tanford,et al.  The critical micelle concentration of L- -dipalmitoylphosphatidylcholine in water and water-methanol solutions. , 1972, Journal of molecular biology.

[47]  L. Zhang,et al.  Nanoparticles in Medicine: Therapeutic Applications and Developments , 2008, Clinical pharmacology and therapeutics.

[48]  Lise Arleth,et al.  In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. , 2004, Journal of pharmaceutical sciences.

[49]  H. Lee,et al.  Stable and efficient delivery of docetaxel by micelle-encapsulation using a tripodal cyclotriphosphazene amphiphile. , 2012, International journal of pharmaceutics.

[50]  R. Service Nanotechnology Takes Aim at Cancer , 2005, Science.

[51]  Y. Jeong,et al.  Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. , 2003, International journal of pharmaceutics.

[52]  T. Andresen,et al.  Understanding detergent effects on lipid membranes: a model study of lysolipids. , 2010, Biophysical journal.

[53]  G. Piéroni,et al.  Observations on the critical micellar concentration of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and a series of its homologs and analogs. , 1984, Chemistry and physics of lipids.

[54]  D. Scheinberg,et al.  Conscripts of the infinite armada: systemic cancer therapy using nanomaterials , 2010, Nature Reviews Clinical Oncology.

[55]  Yuquan Wei,et al.  PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. , 2014, Biomaterials.

[56]  J. Becker,et al.  Chemoimmunotherapy for melanoma with dacarbazine and 2,4-dinitrochlorobenzene: results from a murine tumour model , 2001, Melanoma research.

[57]  D. Maysinger,et al.  Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. , 1998, Bioconjugate chemistry.

[58]  Numan Hoda,et al.  Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering , 2013 .

[59]  Xiaoling Fang,et al.  Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation , 2013, International journal of nanomedicine.

[60]  Jianbin Huang,et al.  Effects of inorganic and organic salts on aggregation behavior of cationic gemini surfactants. , 2010, The journal of physical chemistry. B.

[61]  A. Gesquiere,et al.  Caveolae-mediated endocytosis of conjugated polymer nanoparticles. , 2013, Macromolecular bioscience.

[62]  Qiaobing Xu,et al.  Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. , 2014, Angewandte Chemie.

[63]  Xiao-ling Fang,et al.  Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation , 2013, International journal of nanomedicine.

[64]  James M. Anderson,et al.  Foreign body reaction to biomaterials. , 2008, Seminars in immunology.

[65]  Shaoyi Jiang,et al.  Superhydrophilic zwitterionic polymers stabilize liposomes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[66]  M. Hart,et al.  Physical and chemical stability of Taxotere® (docetaxel) one-vial (20 mg/ml) infusion solution following refrigerated storage , 2010, ecancermedicalscience.

[67]  J. Gołąb,et al.  Potentiated antitumour effects of cisplatin and lovastatin against MmB16 melanoma in mice. , 1998, European journal of cancer.

[68]  R. Mumper,et al.  A critical review of lipid-based nanoparticles for taxane delivery. , 2013, Cancer letters.

[69]  Kinam Park,et al.  Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction , 2010, Expert opinion on drug delivery.

[70]  R. Service Nanotechnology. Nanoparticle Trojan horses gallop from the lab into the clinic. , 2010, Science.

[71]  P. Hassan,et al.  Self assembled materials: design strategies and drug delivery perspectives. , 2013, Physical chemistry chemical physics : PCCP.

[72]  S. Ikeda,et al.  Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles , 1986 .

[73]  J. Molina-Bolívar,et al.  Effect of ethylene glycol on the thermodynamic and micellar properties of Tween 20 , 2003 .

[74]  Andrew L. Ferguson,et al.  Investigating the optimal size of anticancer nanomedicine , 2014, Proceedings of the National Academy of Sciences.

[75]  Jun Sun,et al.  PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. , 2011, European journal of pharmacology.