Laccase-mediated synthesis of lignin-core hyperbranched copolymers

[1]  A. Ragauskas,et al.  Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. , 2017, Chemical record.

[2]  A. Ragauskas,et al.  Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization , 2016, Applied Microbiology and Biotechnology.

[3]  W. Stahel,et al.  The Circular Economy , 2019 .

[4]  A. Ragauskas,et al.  Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones , 2015 .

[5]  X. Loh,et al.  Development of Lignin Supramolecular Hydrogels with Mechanically Responsive and Self-Healing Properties , 2015 .

[6]  Chao Gao,et al.  Hyperbranched polymers: advances from synthesis to applications. , 2015, Chemical Society reviews.

[7]  A. Ragauskas,et al.  Value Added Biomaterials via Laccase-Mediated Surface Functionalization , 2015 .

[8]  A. McDonald,et al.  Lignin valorization by forming thermally stimulated shape memory copolymeric elastomers—Partially crystalline hyperbranched polymer as crosslinks , 2014 .

[9]  Gerald A. Tuskan,et al.  Lignin Valorization: Improving Lignin Processing in the Biorefinery , 2014, Science.

[10]  T. Tzanov,et al.  An enzymatic approach to develop a lignin-based adhesive for wool floor coverings , 2014 .

[11]  S. Kalia,et al.  Laccase-assisted surface functionalization of lignocellulosics , 2014 .

[12]  F. S. Baker,et al.  Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass , 2014 .

[13]  G. Mamo,et al.  Production and properties of adhesives formulated from laccase modified Kraft lignin , 2013 .

[14]  Miao Sun,et al.  A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. , 2012, Journal of the American Chemical Society.

[15]  A. McDonald,et al.  Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranched prepolymers for cross-linking , 2012 .

[16]  F. S. Baker,et al.  Turning renewable resources into value-added polymer: development of lignin-based thermoplastic , 2012 .

[17]  M. Kosa Direct and multistep conversion of lignin to biofuels , 2012 .

[18]  John Ralph,et al.  Lignin Biosynthesis and Structure1 , 2010, Plant Physiology.

[19]  M. Brochier-Salon,et al.  Lignins as Macromonomers for Polyurethane Synthesis: A Comparative Study on Hydroxyl Group Determination , 2008 .

[20]  A. J. Augustine,et al.  O2 reduction to H2O by the multicopper oxidases. , 2008, Dalton transactions.

[21]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[22]  A. Hüttermann,et al.  Enzymatic co-polymerization of lignin with low-molecular mass compounds , 2004, Applied Microbiology and Biotechnology.

[23]  Wolfgang G. Glasser,et al.  Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials , 2002 .

[24]  A. Hüttermann,et al.  Modification of lignin for the production of new compounded materials , 2001, Applied Microbiology and Biotechnology.

[25]  Arthur J. Ragauskas,et al.  N-Hydroxy Compounds as New Internal Standards for the 31P-NMR Determination of Lignin Hydroxy Functional Groups , 2001 .

[26]  James E. Sealey,et al.  Residual lignin studies of laccase delignified kraft pulps , 1998 .

[27]  A. Messerschmidt Multi-Copper Oxidases , 1997 .

[28]  P. M. Froass Structural changes in lignin during kraft pulping and chlorine dioxide bleaching , 1996 .

[29]  D. Argyropoulos,et al.  2 Chloro 4,4,5,5 tetramethyl 1,3,2 dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins , 1995 .

[30]  C. Bianchini,et al.  Dioxomolybdenum(VI) Complexes Stabilized by Polydentate Ligands with NO3, N2O2, and NS2 Donor-Atom Sets , 1994 .

[31]  C. Thurston The structure and function of fungal laccases , 1994 .

[32]  R. Willson,et al.  RADICAL‐CATIONS AS REFERENCE CHROMOGENS IN KINETIC STUDIES OF ONE‐ELECTRON‐TRANSFER REACTIONS: PULSE‐RADIOLYSIS STUDIES OF 2,2′‐AZINOBIS(3‐ETHYLBENZOTHIAZOLINE‐6‐SULFONATE) , 1982 .