Verifying the concentration property of permutation networks by BDDs

A concentrator is a circuit with n inputs and m ≤ n outputs that can route any given subset of k ≤ m valid inputs to k of its m outputs. Concentrator circuits are important for many applications, in particular, for the design of interconnection networks. The design of concentrator circuits is however a challenging task that has already been considered in many research papers. All practical implementations aim at configuring the switches of a permutation network so that it behaves as a concentrator. In this paper, we present methods to analyze various properties of permutation networks by means of binary decision diagrams (BDDs). In particular, we can check whether it is possible to use a considered permutation network as a concentrator or even as a binary sorter. While our method can be applied to all permutation networks, we consider some particular permutation networks and verify that some of them can be used as concentrators and even as binary sorters provided that a specific permutation of the outputs is added.

[1]  A. Yavuz Oruç,et al.  Adaptive Binary Sorting Schemes and Associated Interconnection Networks , 1994, IEEE Trans. Parallel Distributed Syst..

[2]  Rahul Ratan,et al.  Self-Routing Quantum Sparse Crossbar Packet Concentrators , 2011, IEEE Transactions on Computers.

[3]  A. Mullin,et al.  Mathematical Theory of Connecting Networks and Telephone Traffic. , 1966 .

[4]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[5]  Ming Lu,et al.  Efficient networks for realizing point-to-point assignments in parallel processors , 1992, [1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing.

[6]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[7]  Byeong Gi Lee,et al.  ECI value generations in CSE-based distributors , 1998, IEEE Trans. Commun..

[8]  Tse-Yun Feng,et al.  On a Class of Multistage Interconnection Networks , 1980, IEEE Transactions on Computers.

[9]  Hasan Çam,et al.  A Fast VLSI-Efficient Self-Routing Permutation Network , 1995, IEEE Trans. Computers.

[10]  Kyungsook Y. Lee On the Rearrangeability of 2(log2N) - 1 Stage Permutation Networks , 1985, IEEE Trans. Computers.

[11]  John H. Reif,et al.  Synthesis of Parallel Algorithms , 1993 .

[12]  Eli Upfal,et al.  An O(logN) deterministic packet routing scheme , 1989, STOC '89.

[13]  A. Yavuz Oruç,et al.  Design of efficient and easily routable generalized connectors , 1995, IEEE Trans. Commun..

[14]  Nicholas Pippenger,et al.  Self-routing superconcentrators , 1993, J. Comput. Syst. Sci..

[15]  Madihally J. Narasimha The Batcher-banyan self-routing network: universality and simplification , 1988, IEEE Trans. Commun..

[16]  Eli Upfal,et al.  An O(log N) deterministic packet-routing scheme , 1992, JACM.

[17]  Byeong Gi Lee,et al.  A new distributor structure based on CSEs with application to virtual FIFO queue , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[18]  A. Yavuz Oruç,et al.  High performance concentrators and superconcentrators using multiplexing schemes , 1994, IEEE Trans. Commun..

[19]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[20]  Alberto Leon-Garcia,et al.  Nonblocking property of reverse banyan networks , 1992, IEEE Trans. Commun..

[21]  Gerald M. Masson,et al.  Lower Bounds on Crosspoints in Concentrators , 1982, IEEE Transactions on Computers.

[22]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[23]  William J. Dally,et al.  Flattened Butterfly Topology for On-Chip Networks , 2007, IEEE Comput. Archit. Lett..

[24]  Hasan Çam,et al.  Rearrangeability of (2n-1)-Stage Shuffle-Exchange Networks , 2003, SIAM J. Comput..

[25]  Wen-Tsuen Chen,et al.  A New Self-Routing Permutation Network , 1996, IEEE Trans. Computers.

[26]  Gerald M. Masson,et al.  A Sampler of Circuit Switching Networks , 1979, Computer.

[27]  Cauligi S. Raghavendra,et al.  Nonblocking properties of interconnection switching networks , 1995, IEEE Trans. Commun..

[28]  Sartaj Sahni,et al.  Parallel permutation and sorting algorithms and a new generalized connection network , 1982, JACM.

[29]  H. K. Dai On synchronous strictly non-blocking concentrators and generalized-concentrators , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[30]  A. Yavuz Oruç,et al.  A Self-Routing Permutation Network , 1990, J. Parallel Distributed Comput..

[31]  Byeong Gi Lee,et al.  A new distribution network based on controlled switching elements and its applications , 1995, TNET.

[32]  Gene Eu Jan,et al.  Fast Self-Routing Permutation Switching on an Asymptotically Minimum Cost Network , 1993, IEEE Trans. Computers.

[33]  Sartaj Sahni,et al.  Parallel Algorithms to Set Up the Benes Permutation Network , 1982, IEEE Transactions on Computers.

[34]  Ian Parberry,et al.  The Pairwise Sorting Network , 1992, Parallel Process. Lett..

[35]  Syed Abdul Rahman Al-Haddad,et al.  Introduction and analysis of optimal routing algorithm in Benes networks , 2014 .

[36]  Steven J. E. Wilton,et al.  Concentrator access networks for programmable logic cores on SoCs , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[37]  C. T. Lea Non-blocking copy networks for multicast packet switching , 1988 .

[38]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[39]  Klaus Schneider,et al.  The selector-tree network: A new self-routing and non-blocking interconnection network , 2016, 2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC).

[40]  Sahel Alouneh,et al.  Reliability of recursive concentrator , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.

[41]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[42]  Tony T. Lee Nonblocking copy networks for multicast packet switching , 1988, IEEE J. Sel. Areas Commun..

[43]  A. Yavuz Oruç,et al.  Regular Sparse Crossbar Concentrators , 1998, IEEE Trans. Computers.

[44]  Madihally J. Narasimha A recursive concentrator structure with applications to self-routing switching networks , 1994, IEEE Trans. Commun..

[45]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[46]  Frank K. Hwang,et al.  Advances in Switching Networks , 1998 .

[47]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[48]  A. Yavuz Oruç,et al.  Efficient Nonblocking Switching Networks for Interprocessor Communications in Multiprocessor Systems , 1995, IEEE Trans. Parallel Distributed Syst..

[49]  Clark D. Thomborson,et al.  Generalized Connection Networks for Parallel Processor Intercommunication , 1978, IEEE Trans. Computers.

[50]  Sofia Cassel,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 2012 .