A multireference coupled‐cluster study of the ground state and lowest excited states of cyclobutadiene
暂无分享,去创建一个
[1] S. Peyerimhoff,et al. ab initio Study on the Stability and Geometry of Cyclobutadiene , 1968 .
[2] P. Taylor,et al. A full CI treatment of the 1A1-3B1 separation in methylene , 1986 .
[3] Rodney J. Bartlett,et al. Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .
[4] Kensuke Nakamura,et al. Second-order Jahn-Teller effect of cyclobutadiene in low-lying states. An MCSCF study , 1989 .
[5] S. Pal,et al. Use of Cluster Expansion Methods in the Open-Shell Correlation Problem , 1989 .
[6] Henry F. Schaefer,et al. A new implementation of the full CCSDT model for molecular electronic structure , 1988 .
[7] R. Bartlett,et al. A coupled cluster approach with triple excitations , 1984 .
[8] L. J. Schaad,et al. Use of molecular symmetry in coupled‐cluster theory , 1987 .
[9] J. Paldus,et al. Cluster relations for multireference coupled‐cluster theories: A model study , 1991 .
[10] A. Voter,et al. The generalized resonating valence bond description of cyclobutadiene , 1986 .
[11] R. Bartlett,et al. The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .
[12] Lionel Salem,et al. Die elektronischen Eigenschaften von Diradikalen , 1972 .
[13] B. Brandow. Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .
[14] M. Head‐Gordon,et al. A fifth-order perturbation comparison of electron correlation theories , 1989 .
[15] J. Hinze,et al. The Unitary group for the evaluation of electronic energy matrix elements , 1981 .
[16] R. Bartlett,et al. The general model space effective Hamiltonian in order‐for‐order expansion , 1989 .
[17] H. Monkhorst,et al. Coupled-cluster method for multideterminantal reference states , 1981 .
[18] R. Bartlett,et al. A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .
[19] L. J. Schaad,et al. Variational calculations on the Ag vibrational states, the automerization, and the predicted Raman spectrum of cyclobutadiene , 1990 .
[20] U. Kaldor,et al. Degeneracy breaking in the Hilbert‐space coupled cluster method , 1993 .
[21] Mark R. Hoffmann,et al. A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .
[22] R. Bartlett,et al. Coupled-cluster method for open-shell singlet states , 1992 .
[23] S. J. Cole,et al. Towards a full CCSDT model for electron correlation , 1985 .
[24] B. Carpenter. Heavy-atom tunneling as the dominant pathway in a solution-phase reaction? Bond shift in antiaromatic annulenes , 1983 .
[25] G. Maier. Ungewöhnliche Moleküle. Wechselspiel zwischen Theorie und Experiment , 1991 .
[26] L. C. Snyder. A SIMPLE MOLECULAR ORBITAL STUDY OF AROMATIC MOLECULES AND IONS HAVING ORBITALLY DEGENERATE GROUND STATES , 1962 .
[27] L. T. Redmon,et al. Accurate binding energies of diborane, borane carbonyl, and borazane determined by many-body perturbation theory , 1979 .
[28] Rodney J. Bartlett,et al. Hilbert space multireference coupled-cluster methods. II: A model study on H8 , 1992 .
[29] F. Fratev,et al. Ab initio study of cyclobutadiene in excited states: optimized geometries, electronic transitions and aromaticities , 1982 .
[30] V. Staemmler,et al. A theoretical study of the structure of cyclobutadiene , 1977 .
[31] R. Bartlett,et al. Ab initio calculations on the energy of activation and tunneling in the automerization of cyclobutadiene , 1988 .
[32] Alistair P. Rendell,et al. Triple and quadruple excitation contributions to the binding in Be clusters: Calibration calculations on Be3 , 1990 .
[33] K. Brueckner,et al. Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .
[34] R. Bartlett,et al. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .
[35] S. Sander,et al. Fourier transform infrared spectroscopy of the NO3 nu-2 and nu-3 bands - Absolute line strength measurements , 1987 .
[36] Romuald Lenczewski,et al. Symmetries in Science II , 1986, Springer US.
[37] J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .
[38] Nicholas C. Handy,et al. Size-consistent Brueckner theory limited to double substitutions , 1989 .
[39] P. Löwdin,et al. New Horizons of Quantum Chemistry , 1983 .
[40] Klaus Ruedenberg,et al. Electronic rearrangements during chemical reactions. II. Planar dissociation of ethylene , 1979 .
[41] U. Kaldor,et al. The shifted scheme in the general-model-space diagrammatic perturbation theory , 1981 .
[42] Leszek Meissner,et al. A coupled‐cluster method for quasidegenerate states , 1988 .
[43] Weissberger. Physical methods of chemistry , 1971 .
[44] R. Bartlett,et al. The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .
[45] M. Newton,et al. Potential energy surfaces of cyclobutadiene: ab initio SCF and CI calculations for the low-lying singlet and triplet states , 1978 .
[46] R. Bartlett,et al. A coupled‐cluster study of the ground state of C+3 , 1991 .
[47] J. G. Radziszewski,et al. 13C NMR and polarized IR spectra of vicinally labeled [13C2]cyclobutadiene in an argon matrix: Interconversion of valence tautomers , 1988 .
[48] J. Michl,et al. Electronic states of cyclobutadiene heteroanalogs. Critical biradicaloids , 1989 .
[49] M. Platz. Kinetics and spectroscopy of carbenes and biradicals , 1990 .