Probability Distributions of Assets Inferred from Option Prices via the Principle of Maximum Entropy
暂无分享,去创建一个
[1] Jonathan M. Borwein,et al. Partially finite convex programming, Part I: Quasi relative interiors and duality theory , 1992, Math. Program..
[2] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[3] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[4] J. Borwein,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[5] J. Hull. Options, futures, and other derivative securities , 1989 .
[6] P. Buchen,et al. The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.
[7] Jonathan M. Borwein,et al. Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..
[8] Jonathan M. Borwein,et al. Strong Rotundity and Optimization , 1994, SIAM J. Optim..
[9] Pierre Maréchal. A Note on Entropy Optimization , 2001 .
[10] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[11] Edward K. Wong,et al. A survey on the maximum entropy method and parameter spectral estimation , 1990 .
[12] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[13] Marco Avellaneda,et al. Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .
[14] Jonathan M. Borwein,et al. Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..
[15] R. Tyrrell Rockafellar,et al. Convex Integral Functionals and Duality , 1971 .
[16] Marco Avellaneda. The minimum-entropy algorithm and related methods for calibrating asset-pricing models , 1998 .