Probability Distributions of Assets Inferred from Option Prices via the Principle of Maximum Entropy

This article revisits the maximum entropy algorithm in the context of recovering the probability distribution of an asset from the prices of finitely many associated European call options via partially finite convex programming. We are able to provide an effective characterization of the constraint qualification under which the problem reduces to optimizing an explicit function in finitely many variables. We also prove that the value (or objective) function is lower semicontinuous on its domain. Reference is given to a website which exploits these ideas for the efficient computation of the maximum entropy solution (MES).

[1]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part I: Quasi relative interiors and duality theory , 1992, Math. Program..

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[5]  J. Hull Options, futures, and other derivative securities , 1989 .

[6]  P. Buchen,et al.  The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.

[7]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..

[8]  Jonathan M. Borwein,et al.  Strong Rotundity and Optimization , 1994, SIAM J. Optim..

[9]  Pierre Maréchal A Note on Entropy Optimization , 2001 .

[10]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[11]  Edward K. Wong,et al.  A survey on the maximum entropy method and parameter spectral estimation , 1990 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[14]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[15]  R. Tyrrell Rockafellar,et al.  Convex Integral Functionals and Duality , 1971 .

[16]  Marco Avellaneda The minimum-entropy algorithm and related methods for calibrating asset-pricing models , 1998 .