On The Use of Entropy to Predict Boundary Layer Stability

Boundary layer transition is a critical parameter in the design of fluid flow systems. This situation is due to the dramatic change in both entropy production and heat transfer that accompanies it. It is well recognized that many parameters affect the location of transition onset, however, no models exist which unify all these parameters. This paper presents a new hypothesis that the driving force of boundary layer transition onset is the entropy generation rate alone, with all other parameters being functions of this higher order quantity. At present this hypothesis is speculative, but encouraging since good compatibility is found with more established transition models.

[1]  B. J. Abu-Ghannam,et al.  Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History , 1980 .

[2]  H. Fernholz Boundary Layer Theory , 2001 .

[3]  R. Mayle,et al.  The Path to Predicting Bypass Transition , 1996 .

[4]  I. Ulizar,et al.  Aerodynamic Design of a New Five Stage Low Pressure Turbine for the Rolls Royce Trent 500 Turbofan , 2001 .

[5]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[6]  H. Schlichting Boundary Layer Theory , 1955 .

[7]  Terrence W. Simon,et al.  Spectral Measurements in Transitional Boundary Layers on a Concave Wall Under High and Low Free-Stream Turbulence Conditions , 2000 .

[8]  J. Denton Loss Mechanisms in Turbomachines , 1993 .

[9]  M. L. G. Oldfield,et al.  Effect of free-stream turbulence on flat-plate heat flux signals : Spectra and eddy transport velocities , 1996 .

[10]  R. E. Mayle,et al.  The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines , 1991 .

[11]  F. K. O’Donnell,et al.  Turbine Blade Entropy Generation Rate: Part II — The Measured Loss , 2000 .

[12]  J. H. Phillips,et al.  The unsteady laminar boundary layer on a semi-infinite flat plate due to small fluctuations in the magnitude of the free-stream velocity , 1972, Journal of Fluid Mechanics.

[13]  Roddam Narasimha,et al.  The laminar-turbulent transition zone in the boundary layer , 1985 .

[14]  H. C. de Lange,et al.  Effects of Compressibility and Turbulence Level on Bypass Transition , 1998 .

[15]  Olivier Pironneau,et al.  Numerical Simulation of Unsteady Flows and Transition to Turbulence , 1992 .

[16]  B. E. Launder,et al.  Closure Strategies for Turbulent and Transitional Flows , 2002 .

[17]  F. Moore,et al.  Unsteady laminar boundary-layer flow , 1951 .

[18]  Roy Y. Myose,et al.  A Prediction Method for the Local Entropy Generation Rate in a Transitional Boundary Layer With a Free Stream Pressure Gradient , 2002 .

[19]  John D. Denton,et al.  The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines , 1993 .

[20]  Shu-Kun Lin,et al.  Shape and Structure, from Engineering to Nature , 2001, Entropy.

[21]  K. Pohlhausen,et al.  Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht , 1921 .

[22]  M. Lighthill,et al.  The response of laminar skin friction and heat transfer to fluctuations in the stream velocity , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Meinhard T. Schobeiri,et al.  Prediction of turbine blade heat transfer and aerodynamics using a new unsteady boundary layer transition model , 2002 .

[24]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[25]  R. E. Mayle,et al.  The Role of Laminar-Turbulent Transition in Gas Turbine Engines , 1991 .

[26]  B. Thwaites,et al.  Approximate Calculation of the Laminar Boundary Layer , 1949 .

[27]  R. Mayle,et al.  Heat Transfer Committee and Turbomachinery Committee Best Paper of 1996 Award: The Path to Predicting Bypass Transition , 1997 .

[28]  H. Liepmann,et al.  Investigations on laminar boundary-layer stability and transition on curved boundaries , 1943 .