Oxidation Conditions for Octadecyl Trichlorosilane Monolayers on Silicon: A Detailed Atomic Force Microscopy Study of the Effects of Pulse Height and Duration on the Oxidation of the Monolayer and the Underlying Si Substrate

In current scanning-probe nanolithography research, substrates consisting of octadecyl trichlorosilane monolayers on silicon are often used. On one hand, the presence of an organic monolayer can be used as a passive resist, influencing the formation of silicon dioxide on the substrate, whereas in other cases the monolayer itself is patterned, creating local chemical functionality. In this study we investigate the time scales involved in either process. By looking at friction and height images of lines oxidized at different bias voltages and different pulse durations, we have determined the parameter space in which the formation of silicon dioxide is dominant as well as the region in which the oxidation of the monolayer itself is dominant.

[1]  Hongjie Dai,et al.  A New Scanning Probe Lithography Scheme with a Novel Metal Resist , 2002 .

[2]  Calvin F. Quate,et al.  Scanning probes as a lithography tool for nanostructures , 1997 .

[3]  Linewidth determination in local oxidation nanolithography of silicon surfaces , 2002 .

[4]  O. Marti,et al.  Dynamic friction force measurement with the scanning force microscope , 1999 .

[5]  Jung-Pyo Hong,et al.  Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope , 1999 .

[6]  Eric S. Snow,et al.  The kinetics and mechanism of scanned probe oxidation of Si , 2000 .

[7]  Hideki Kawakatsu,et al.  Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever. , 2002, Ultramicroscopy.

[8]  Chad A. Mirkin,et al.  Parallel dip-pen nanolithography with arrays of individually addressable cantilevers , 2004 .

[9]  S. Ahn,et al.  Positive and negative patterning on a palmitic acid Langmuir–Blodgett monolayer on Si surface using bias-dependent atomic force microscopy lithography , 2002 .

[10]  H. Sugimura,et al.  Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: scanning probe electrochemistry toward nanolithography. , 2002, Ultramicroscopy.

[11]  S. Ahn,et al.  Mechanism of atomic force microscopy anodization lithography on a mixed Langmuir–Blodgette resist of palmitic acid and hexadecylamine on silicon , 2002 .

[12]  R. Maoz,et al.  Planned Nanostructures of Colloidal Gold via Self-Assembly on Hierarchically Assembled Organic Bilayer Template Patterns with In-situ Generated Terminal Amino Functionality , 2004 .

[13]  Ricardo Garcia,et al.  Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods , 2001 .

[14]  S. Hoeppener,et al.  Constructive Microlithography: Electrochemical Printing of Monolayer Template Patterns Extends Constructive Nanolithography to the Micrometer−Millimeter Dimension Range , 2003 .

[15]  Sidney R. Cohen,et al.  “Constructive Nanolithography”: Inert Monolayers as Patternable Templates for In‐Situ Nanofabrication of Metal–Semiconductor–Organic Surface Structures—A Generic Approach , 2000 .

[16]  Chad A Mirkin,et al.  The evolution of dip-pen nanolithography. , 2004, Angewandte Chemie.

[17]  Ulrich S Schubert,et al.  Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. , 2004, Angewandte Chemie.

[18]  Bharat Bhushan,et al.  Applied scanning probe methods , 2006 .

[19]  Sidney R. Cohen,et al.  Metal Nanoparticles, Nanowires, and Contact Electrodes Self‐Assembled on Patterned Monolayer Templates—A Bottom‐up Chemical Approach , 2002 .

[20]  Abdullah Atalar,et al.  Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes , 1999 .

[21]  Joël Chevrier,et al.  Detection of electrostatic forces with an atomic force microscope: Analytical and experimental dynamic force curves in the nonlinear regime , 2003 .

[22]  Hiroyuki Sugimura,et al.  Chemical Approach to Nanofabrication: Modifications of Silicon Surfaces Patterned by Scanning Probe Anodization , 1995 .

[23]  R. Piner,et al.  Cross talk between friction and height signals in atomic force microscopy , 2002 .

[24]  Sidney R. Cohen,et al.  Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures , 1999 .

[25]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[26]  Sidney R. Cohen,et al.  Constructive Nanolithography: Site‐Defined Silver Self‐Assembly on Nanoelectrochemically Patterned Monolayer Templates , 2000 .

[27]  Stephan Krämer,et al.  Scanning probe lithography using self-assembled monolayers. , 2003, Chemical reviews.

[28]  U. Schubert,et al.  Constructive Nanolithography and Nanochemistry: Local Probe Oxidation and Chemical Modification , 2003 .

[29]  H. Sugimura,et al.  Scanning probe lithography for electrode surface modification , 1999 .

[30]  W. Arnold,et al.  Atomic Force Microscopy with Lateral Modulation , 2004 .

[31]  P M Campbell,et al.  Proximal probe-based fabrication of nanostructures , 1996 .

[32]  Ricardo Garcia,et al.  Parallel writing by local oxidation nanolithography with submicrometer resolution , 2003 .

[33]  A. Vladár,et al.  Silicon nanostructures fabricated by scanning probe oxidation and tetra-methyl ammonium hydroxide etching , 2002 .

[34]  Joël Chevrier,et al.  Imaging of stored charges in Si quantum dots by tapping and electrostatic force microscopy , 2002 .

[35]  A. Spychalski-Merle Friction contrast in resonant cantilever vibration mode , 2000 .

[36]  Qiguang Li,et al.  Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template , 2003 .

[37]  H. Yokoyama,et al.  Current, charge, and capacitance during scanning probe oxidation of silicon. I: Maximum charge density and lateral diffusion , 2004 .

[38]  J. Dagata,et al.  Current, charge, and capacitance during scanning probe oxidation of silicon. II: Electrostatic and meniscus forces acting on cantilever bending , 2004 .

[39]  C. Sow,et al.  Oxide growth and its dielectrical properties on alkylsilated native-SiO2/Si surface , 2004 .