Giant Electrostriction in Gd‐Doped Ceria

Gd-doped CeO(2) exhibits an anomalously large electrostriction effect generating stress that can reach 500 MPa. In situ XANES measurements indicate that the stress develops in response to the rearrangement of cerium-oxygen vacancy pairs. This mechanism is fundamentally different from that of materials currently in use and suggests that Gd-doped ceria is a representative of a new family of high-performance electromechanical materials.

[1]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[2]  E. Wachtel,et al.  Low temperature dielectric properties of Ce0.8Gd0.2O1.9 films , 2012 .

[3]  P. McIntyre,et al.  Mobile Ferroelastic Domain Walls in Nanocrystalline PZT Films: the Direct Piezoelectric Effect , 2011 .

[4]  E. Wachtel,et al.  The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2 − x , 2010 .

[5]  E. Wachtel,et al.  Local Structure and Strain‐Induced Distortion in Ce0.8Gd0.2O1.9 , 2010, Advanced materials.

[6]  E. Wachtel,et al.  Influence of Point‐Defect Reaction Kinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9 , 2009 .

[7]  Y. Feldman,et al.  Elasticity of Solids with a Large Concentration of Point Defects II. The Chemical Strain Effect in Ce0.8Gd0.2O1.9 , 2007 .

[8]  L. Gauckler,et al.  Solid Oxide Fuel Cells: Systems and Materials , 2004 .

[9]  Yi-Chu Hsu,et al.  Demonstration and characterization of PZT thin-film sensors and actuators for meso- and micro-structures , 2004 .

[10]  F. Zhang,et al.  Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy , 2004 .

[11]  A. K. Tyagi,et al.  Structural analysis of excess-anion C-type rare earth oxide: a case study with Gd1-xCexO1.5+x/2 (x = 0.20 and 0.40) , 2003 .

[12]  Sangtae Kim,et al.  On the conductivity mechanism of nanocrystalline ceria , 2002 .

[13]  M. Cantoni,et al.  Properties of ferroelectric PbTiO3 thin films , 2002 .

[14]  J. Calderon‐Moreno,et al.  Stress induced domain switching of PZT in compression tests , 2001 .

[15]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[16]  Mogens Bjerg Mogensen,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[17]  A. Atkinson Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes , 1997 .

[18]  R. Newnham,et al.  Interferometric evaluation of electrostriction coefficients , 1996 .

[19]  R. Newnham,et al.  Converse method measurements of electrostriction coefficients in low-K dielectrics , 1996 .

[20]  Takaaki Tsurumi,et al.  Analysis of Bending Displacement of Lead Zirconate Titanate Thin Film Synthesized by Hydrothermal Method , 1993 .

[21]  I. Chen,et al.  X-ray Absorption Studies of Ceria with Trivalent Dopants , 1991 .

[22]  Warren P. Mason,et al.  Electrostrictive Effect in Barium Titanate Ceramics , 1948 .

[23]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[24]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[25]  J. Irvine,et al.  Study of the order–disorder transition in yttria-stabilised zirconia by neutron diffraction , 1996 .

[26]  D. Whitmore,et al.  Dielectric and Anelastic Relaxation in Ca-Doped Cerium Dioxide , 1971 .