Ultrasound-assisted impregnation for high temperature Fischer-Tropsch catalysts.

[1]  P. Forzatti,et al.  catalyst deactivation , 2020, Catalysis from A to Z.

[2]  M. Rigamonti,et al.  Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatics adsorption. , 2018, Ultrasonics sonochemistry.

[3]  Mbongiseni W. Dlamini,et al.  A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica , 2018 .

[4]  M. Reyniers,et al.  First Principle Study on the Adsorption of Hydrocarbon Chains Involved in Fischer–Tropsch Synthesis over Iron Carbides , 2017 .

[5]  J. Chaouki,et al.  Shedding light on iron pentacarbonyl photochemistry through a CVD case study , 2017 .

[6]  S. V. Sancheti,et al.  A review of engineering aspects of intensification of chemical synthesis using ultrasound. , 2017, Ultrasonics sonochemistry.

[7]  M. Haghighi,et al.  Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. , 2016, Ultrasonics sonochemistry.

[8]  Carlo Pirola,et al.  High-loaded Fe-supported catalyst for the thermochemical BTL-FT process: Experimental results and modelling , 2016 .

[9]  D. Boffito,et al.  Partial oxidation of methane to syngas over Pt/Rh/MgO catalyst supported on FeCralloy woven fibre , 2016 .

[10]  W. Green,et al.  Micro‐syngas technology options for GtL , 2016 .

[11]  Mohammad Irani,et al.  Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation , 2015 .

[12]  S. Mousavi,et al.  Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3. , 2015, Journal of environmental sciences.

[13]  C. Bianchi,et al.  Ultrasonic free fatty acids esterification in tobacco and canola oil. , 2014, Ultrasonics sonochemistry.

[14]  A. Khodakov,et al.  Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction , 2014 .

[15]  F. Manenti,et al.  Biosyngas Conversion by Fischer – Tropsch Synthesis: Experimental Results and Multi-scale Simulation of a Pbr with High Fe Loaded Supported Catalysts , 2014 .

[16]  T. Uchida,et al.  Ultrasonic power measurement by calorimetric method using water as heating material , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[17]  S. Abelló,et al.  Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. , 2011, ChemSusChem.

[18]  Gang Chen,et al.  Historical pipeline construction cost analysis , 2011 .

[19]  H. Möhwald,et al.  Ultrasonic Cavitation at Solid Surfaces , 2011, Advanced materials.

[20]  N. R. Shiju,et al.  Bimetallic catalysts for the Fischer-Tropsch reaction , 2011 .

[21]  Carlo Pirola,et al.  High Loading Fe-supported Fischer–Tropsch Catalysts: Optimization of the Catalyst Performance , 2009 .

[22]  Burtron H. Davis,et al.  Fischer−Tropsch Synthesis: Comparison of Performances of Iron and Cobalt Catalysts , 2007 .

[23]  J. Fierro,et al.  Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors , 2007 .

[24]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[25]  N. Coville,et al.  Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction: Part 4: A study of nitrate and carbonyl derived FT catalysts , 2005 .

[26]  D. Bukur,et al.  Supported iron catalysts for slurry phase Fischer–Tropsch synthesis , 2002 .

[27]  Enrique Iglesia,et al.  Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties , 2002 .

[28]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[29]  L. H. Thompson,et al.  Sonochemistry: Science and Engineering , 1999 .

[30]  H. Arai,et al.  TiO2-SUPPORTED Fe–Co, Co–Ni, AND Ni–Fe ALLOY CATALYSTS FOR FISCHER-TROPSCH SYNTHESIS , 1984 .

[31]  N. Pernicone,et al.  Catalyst activation by reduction , 1978 .

[32]  S. Anandan,et al.  A simple approach for the sonochemical synthesis of Fe3O4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. , 2018, Ultrasonics sonochemistry.

[33]  C. Bianchi,et al.  Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. , 2018, Ultrasonics sonochemistry.

[34]  K. Suslick,et al.  Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests. , 2017, Ultrasonics sonochemistry.

[35]  G S B Lebon,et al.  Characterizing the cavitation development and acoustic spectrum in various liquids. , 2017, Ultrasonics sonochemistry.

[36]  Carlo Pirola,et al.  Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO2-TiO2 systems , 2013 .

[37]  M. Dry,et al.  Chemical concepts used for engineering purposes , 2004 .

[38]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .