Animal transportation networks

Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research.

[1]  O. Pearson A Traffic Survey of Microtus-Reithrodontomys Runways , 1959 .

[2]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[3]  Gordon C. Grigg,et al.  An Analysis of the Orientation of 'magnetic' Termite Mounds. , 1977 .

[4]  David Vleck,et al.  The Energy Cost of Burrowing by the Pocket Gopher Thomomys bottae , 1979, Physiological Zoology.

[5]  M Denny,et al.  Locomotion: The Cost of Gastropod Crawling , 1980, Science.

[6]  A. Cook FIELD STUDIES OF HOMING IN THE PULMONATE SLUG LIMAX PSEUDOFLAVUS (EVANS) , 1980 .

[7]  G. J. Skinner,et al.  Territory, Trail Structure and Activity Patterns in the Wood-Ant, Formica rufa (Hymenoptera: Formicidae) in Limestone Woodland in North-West England , 1980 .

[8]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[9]  Richard Steinberg,et al.  PREVALENCE OF BRAESS' PARADOX , 1983 .

[10]  N. Franks,et al.  The foraging ecology of the army ant Eciton rapax: an ergonomic enigma? , 1985 .

[11]  The effects of weather on runway use by rodents , 1987 .

[12]  N. Biggs RANDOM WALKS AND ELECTRICAL NETWORKS (Carus Mathematical Monographs 22) , 1987 .

[13]  J. Deneubourg,et al.  Trail-laying behaviour during exploratory recruitment in the Argentine ant: Iridomyrmex humilis (Mayr) , 1989 .

[14]  B. G. Lovegrove,et al.  The Cost of Burrowing by the Social Mole Rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: The Role of Soil Moisture , 1989, Physiological Zoology.

[15]  J. Deneubourg,et al.  Functional Self-Organisation Illustrated by Inter-Nest Traffic in Ants: The Case of the Argentine Ant , 1990 .

[16]  R. Shine,et al.  To find an ant: trail-following in Australian blindsnakes (Typhlopidae) , 1992, Animal Behaviour.

[17]  A. Cook The function of trail following in the pulmonate slug, Limax pseudoflavus , 1992, Animal Behaviour.

[18]  B. Silverman,et al.  Self-organizing nest construction in ants: sophisticated building by blind bulldozing , 1992, Animal Behaviour.

[19]  M. Jamon An analysis of trail-following behaviour in the wood mouse, Apodemus sylvaticus , 1994, Animal Behaviour.

[20]  L. Getz,et al.  Burrow morphology as related to social organization of Microtus ochrogaster , 1994 .

[21]  Francisco J. Acosta,et al.  Guerilla vs. phalanx strategies of resource capture: growth and structural plasticity in the trunk trail system of the harvester ant Messor barbarus , 1994 .

[22]  N. Franks,et al.  Foraging for work: how tasks allocate workers , 1994, Animal Behaviour.

[23]  G. O. Batzli,et al.  Monitoring Use of Runways by Voles with Passive Integrated Transponders , 1996 .

[24]  J. Traniello,et al.  Ecology, evolution and division of labour in social insects , 1997, Animal Behaviour.

[25]  Dirk Helbing,et al.  Active Walker Model for the Formation of Human and Animal Trail Systems , 1997 .

[26]  Dirk Helbing,et al.  Modelling the evolution of human trail systems , 1997, Nature.

[27]  A. Gaylard,et al.  Temporal changes in the social structure of a captive colony of the Damaraland mole-rat, Cryptomys damarensis: the relationship of sex and age to dominance and burrow-maintenance activity , 1998 .

[28]  Max Boisot The Information Perspective , 1999 .

[29]  T. D. Fitzgerald,et al.  Collective behavior in social caterpillars , 1999 .

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  G B Blanchard,et al.  Gaseous templates in ant nests. , 2000, Journal of theoretical biology.

[32]  Ricard V. Solé,et al.  Pattern Formation and Optimization in Army Ant Raids , 2000, Artificial Life.

[33]  J. Terkel,et al.  Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. , 2001, The Journal of experimental biology.

[34]  J. J. Howard Costs of trail construction and maintenance in the leaf-cutting ant Atta columbica , 2001, Behavioral Ecology and Sociobiology.

[35]  D. McShea,et al.  Intermediate-level parts in insect societies: adaptive structures that ants build away from the nest , 2001, Insectes Sociaux.

[36]  C. Anderson,et al.  The adaptive benefit of leaf transfer in Atta colombica , 2001, Insectes Sociaux.

[37]  Some factors determining size-matching in the harvester ant Messor barbarus: food type, transfer activity, recruitment rate and size-range , 2001, Insectes Sociaux.

[38]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[39]  Alexandre Dobly,et al.  Movement patterns of male common voles (Microtus arvalis) in a network of Y junctions: role of distant visual cues and scent marks , 2001 .

[40]  A. Suarez,et al.  The Causes and Consequences of Ant Invasions , 2002 .

[41]  W. Tschinkel,et al.  Nest architecture of the ant Formica pallidefulva: structure, costs and rules of excavation , 2004, Insectes Sociaux.

[42]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[43]  J. Terkel,et al.  Mole rats (Spalax ehrenbergi) select bypass burrowing strategies in accordance with obstacle size , 2003, Naturwissenschaften.

[44]  S. Larivière,et al.  Estimating the costs of locomotion in snow for coyotes , 2003 .

[45]  F. Roces,et al.  Cutters, carriers and transport chains: Distance-dependent foraging strategies in the grass-cutting ant Atta vollenweideri , 2003, Insectes Sociaux.

[46]  W. Cook,et al.  Is the matrix really inhospitable? Vole runway distribution in an experimentally fragmented landscape , 2004 .

[47]  Guy Theraulaz,et al.  Efficiency and robustness in ant networks of galleries , 2004 .

[48]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[49]  F. Ratnieks,et al.  Trail geometry gives polarity to ant foraging networks , 2004, Nature.

[50]  J. Shepherd,et al.  Trunk trails and the searching strategy of a leaf-cutter ant, Atta colombica , 1982, Behavioral Ecology and Sociobiology.

[51]  J. Deneubourg,et al.  Self-organized digging activity in ant colonies , 2005, Behavioral Ecology and Sociobiology.

[52]  S. Hubbell,et al.  Host-plant selection, diet diversity, and optimal foraging in a tropical leafcutting ant , 1987, Oecologia.

[53]  K. N. Ganeshaiahl,et al.  Topology of the foraging trails of Leptogenys processionalis — why are they branched? , 1991, Behavioral Ecology and Sociobiology.

[54]  Y. Nishiura,et al.  Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  Christophe Claramunt,et al.  Topological Analysis of Urban Street Networks , 2004 .

[56]  Dirk Helbing,et al.  Optimal traffic organization in ants under crowded conditions , 2004, Nature.

[57]  W. Tschinkel,et al.  Fire ant thermal preferences: behavioral control of growth and metabolism , 1993, Behavioral Ecology and Sociobiology.

[58]  H. Burda,et al.  Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent, the silvery mole‐rat (Heliophobius argenteocinereus) , 2004 .

[59]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[60]  Moshe Reshef,et al.  Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal , 2005, Journal of Experimental Biology.

[61]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[62]  J. Mciver,et al.  Dispersed central place foraging in Australian meat ants , 1991, Insectes Sociaux.

[63]  H. Burda,et al.  Kairomone-guided food location in subterranean Zambian mole-rats (Cryptomys spp., Bathyergidae) , 2005 .

[64]  V. Fourcassié,et al.  Nonrandom search geometry in subterranean termites , 1995, Naturwissenschaften.

[65]  R. Wiltschko,et al.  Magnetic compass orientation in the subterranean rodentCryptomys hottentotus (Bathyergidae) , 1990, Experientia.

[66]  J. Deneubourg,et al.  The blind leading the blind: Modeling chemically mediated army ant raid patterns , 1989, Journal of Insect Behavior.

[67]  R. Jander,et al.  Guide-line and gravity orientation of blind termites foraging in the open (Termitidae:Macrotermes, Hospitalitermes) , 1974, Insectes Sociaux.

[68]  Nagma Shaheen,et al.  A predatory snail distinguishes between conspecific and heterospecific snails and trails based on chemical cues in slime , 2005, Animal Behaviour.

[69]  E. Despland,et al.  Social Cues and Following Behavior in the Forest Tent Caterpillar , 2005, Journal of Insect Behavior.

[70]  K Sneppen,et al.  Networks and cities: an information perspective. , 2005, Physical review letters.

[71]  P. Kuntz,et al.  The growth and form of tunnelling networks in ants. , 2006, Journal of theoretical biology.

[72]  Vito Latora,et al.  The network analysis of urban streets: A dual approach , 2006 .

[73]  Guy Theraulaz,et al.  The interplay between a self-organized process and an environmental template: corpse clustering under the influence of air currents in ants , 2007, Journal of The Royal Society Interface.

[74]  Michael T. Gastner,et al.  The spatial structure of networks , 2006 .

[75]  D. Jackson,et al.  U-turns on ant pheromone trails , 2006, Current Biology.

[76]  Nigel R. Franks,et al.  How a few help all: living pothole plugs speed prey delivery in the army ant Eciton burchellii , 2007, Animal Behaviour.

[77]  M. Elgar,et al.  Colony structure and spatial distribution of food resources in the polydomous meat ant Iridomyrmex purpureus , 2007, Insectes Sociaux.

[78]  Marc Durand Structure of optimal transport networks subject to a global constraint. , 2007, Physical review letters.

[79]  M. Davies,et al.  Energy saving through trail following in a marine snail , 2007, Proceedings of the Royal Society B: Biological Sciences.

[80]  L. Nunes,et al.  Tunnel geometry of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae) in response to sand bulk density and the presence of food , 2007 .

[81]  D. Gordon,et al.  Nest connectivity and colony structure in unicolonial Argentine ants , 2008, Insectes Sociaux.

[82]  F. Ratnieks,et al.  Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger , 2008, Behavioral Ecology and Sociobiology.

[83]  Guy Theraulaz,et al.  Are ants sensitive to the geometry of tunnel bifurcation? , 2008, Animal Cognition.

[84]  Collective and Solitary Behaviors of Twospotted Spider Mite (Acari: Tetranychidae) Are Induced by Trail Following , 2008 .

[85]  D. Sumpter,et al.  Shape and efficiency of wood ant foraging networks , 2008, Behavioral Ecology and Sociobiology.

[86]  Duncan E. Jackson,et al.  Minor workers have a major role in the maintenance of leafcutter ant pheromone trails , 2008, Animal Behaviour.

[87]  S. Comber,et al.  Evolution of African mole-rat sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breeding Fukomys mechowii , 2008 .

[88]  Paul R Moorcroft,et al.  Mechanistic home range models and resource selection analysis: a reconciliation and unification. , 2006, Ecology.

[89]  Guy Theraulaz,et al.  Topological efficiency in three-dimensional gallery networks of termite nests , 2008 .

[90]  R. B. Srygley,et al.  Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? , 2008, Animal Behaviour.

[91]  Prasun Dutta,et al.  Steiner trees and spanning trees in six-pin soap films , 2008, ArXiv.

[92]  P. Bardunias,et al.  Dead Reckoning in Tunnel Propagation of the Formosan Subterranean Termite (Isoptera:Rhinotermitidae) , 2009 .

[93]  Guy Theraulaz,et al.  Path selection and foraging efficiency in Argentine ant transport networks , 2009, Behavioral Ecology and Sociobiology.

[94]  Stephen J. Simpson,et al.  Group structure in locust migratory bands , 2011, Behavioral Ecology and Sociobiology.

[95]  Bartosz A Grzybowski,et al.  Maze solving by chemotactic droplets. , 2010, Journal of the American Chemical Society.

[96]  Eleni Katifori,et al.  Damage and fluctuations induce loops in optimal transport networks. , 2009, Physical review letters.

[97]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[98]  A. Farji-Brener,et al.  Information transfer in head-on encounters between leaf-cutting ant workers: food, trail condition or orientation cues? , 2010, Animal Behaviour.

[99]  Francis Corson,et al.  Fluctuations and redundancy in optimal transport networks. , 2009, Physical review letters.

[100]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[101]  Jean-Louis Deneubourg,et al.  Ant traffic rules , 2010, Journal of Experimental Biology.

[102]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[103]  P. Kuntz,et al.  Characterization of spatial networklike patterns from junction geometry. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  Flavio Roces,et al.  Sequential Load Transport in Grass-Cutting Ants (Atta vollenweideri): Maximization of Plant Delivery Rate or Improved Information Transfer? , 2011 .

[105]  Toshiyuki Nakagaki,et al.  Structure and formation of ant transportation networks , 2011, Journal of The Royal Society Interface.

[106]  D. Sumpter,et al.  Optimisation in a natural system: Argentine ants solve the Towers of Hanoi , 2011, Journal of Experimental Biology.

[107]  David J. T. Sumpter,et al.  Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile) , 2012, PLoS Comput. Biol..

[108]  W. Newmark,et al.  High-use movement pathways and habitat selection by ungulates , 2012 .

[109]  Raphaël Jeanson,et al.  Long-term dynamics in proximity networks in ants , 2012, Animal Behaviour.

[110]  Ventilation of the giant nests of Atta leaf-cutting ants: does underground circulating air enter the fungus chambers? , 2012, Insectes Sociaux.

[111]  Guy Theraulaz,et al.  From Local Growth to Global Optimization in Insect Built Networks , 2012, Biologically Inspired Networking and Sensing.

[112]  M. Fricker,et al.  Analysis of fungal networks , 2012 .

[113]  Andrea Perna,et al.  The modelling cycle for collective animal behaviour , 2012, Interface Focus.

[114]  M. Beekman,et al.  A mathematical model of foraging in a dynamic environment by trail-laying Argentine ants. , 2012, Journal of theoretical biology.

[115]  Guy Theraulaz,et al.  Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed , 2013, PLoS Comput. Biol..

[116]  Ryan S. Udan,et al.  Understanding vascular development , 2013, Wiley interdisciplinary reviews. Developmental biology.

[117]  R. Wirth,et al.  Foraging in highly dynamic environments: leaf‐cutting ants adjust foraging trail networks to pioneer plant availability , 2013 .

[118]  A. Crespi,et al.  Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization , 2013, Science.

[119]  Daniel W. Franks,et al.  Efficiency and robustness of ant colony transportation networks , 2013, Behavioral Ecology and Sociobiology.

[120]  B. Doligez,et al.  Tracking prospecting movements involved in breeding habitat selection: insights, pitfalls and perspectives , 2013 .

[121]  Toshiyuki Nakagaki,et al.  Current-reinforced random walks for constructing transport networks , 2013, Journal of The Royal Society Interface.

[122]  Jacques Gautrais,et al.  How Do Ants Make Sense of Gravity? A Boltzmann Walker Analysis of Lasius niger Trajectories on Various Inclines , 2013, PloS one.

[123]  Nikolai W. F. Bode,et al.  Individual-to-Resource Landscape Interaction Strength Can Explain Different Collective Feeding Behaviours , 2013, PloS one.

[124]  Richard Stafford,et al.  Snails and their trails: the multiple functions of trail‐following in gastropods , 2013, Biological reviews of the Cambridge Philosophical Society.

[125]  J. Velázquez,et al.  Ant foraging and geodesic paths in labyrinths: analytical and computational results. , 2013, Journal of theoretical biology.

[126]  D. Gordon The Ecology of Collective Behavior , 2014, PLoS biology.