Orbits of mutually unbiased bases

We express Alltop?s construction of mutually unbiased bases as orbits under the Weyl?Heisenberg group in prime dimensions and find a related construction in dimensions 2 and 4. We reproduce Alltop?s mutually unbiased bases using abelian subgroups of the Clifford group in prime dimensions, in direct analogy to the well-known construction of mutually unbiased bases using abelian subgroups of the Weyl?Heisenberg group. Finally, we prove three theorems relating to the distances and linear dependencies among different sets of mutually unbiased bases.

[1]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[2]  Wojciech Tadej,et al.  Mubs and Hadamards of Order Six , 2006, quant-ph/0610161.

[3]  L. L. Sanchez-Soto,et al.  Structure of the sets of mutually unbiased bases for N qubits (8 pages) , 2005 .

[4]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[5]  C. Saavedra,et al.  Quantum process reconstruction based on mutually unbiased basis , 2011, 1104.2888.

[6]  David Marcus Appleby,et al.  Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..

[7]  Howard Barnum,et al.  Information-disturbance tradeoff in quantum measurement on the uniform ensemble , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[8]  W. Kantor,et al.  MUBs inequivalence and affine planes , 2011, 1104.3370.

[9]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[10]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[11]  T. Apostol Introduction to analytic number theory , 1976 .

[12]  William O. Alltop,et al.  Complex sequences with low periodic correlations (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[13]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[14]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[15]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[16]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[17]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[18]  Stefan Weigert,et al.  ON THE IMPOSSIBILITY TO EXTEND TRIPLES OF MUTUALLY UNBIASED PRODUCT BASES IN DIMENSION SIX , 2012, 1203.6887.

[19]  Wojciech T. Bruzda,et al.  Mutually unbiased bases and Hadamard matrices of order six , 2007 .

[20]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[21]  J. Lawrence,et al.  Linear Independence of Gabor Systems in Finite Dimensional Vector Spaces , 2005 .

[22]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[23]  Asha Rao,et al.  A Family of Alltop Functions that are EA-Inequivalent to the Cubic Function , 2013, IEEE Transactions on Communications.

[24]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[25]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[26]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[27]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[28]  Ingemar Bengtsson,et al.  From SICs and MUBs to Eddington , 2010, 1103.2030.

[29]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[30]  Romanos Malikiosis,et al.  A note on Gabor frames in finite dimensions , 2013, 1304.7709.

[31]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[32]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[33]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[34]  Stefan Weigert,et al.  Maximal sets of mutually unbiased quantum states in dimension 6 , 2008, 0808.1614.

[35]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[36]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[37]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[38]  Aephraim M. Steinberg,et al.  Improving quantum state estimation with mutually unbiased bases. , 2008, Physical review letters.

[39]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Ching-Yu Huang,et al.  Quantum secret sharing with multilevel mutually (un)biased bases , 2007, 0711.3111.

[41]  P. Jaming,et al.  A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6 , 2009, 0902.0882.

[42]  P. Raynal,et al.  Mutually unbiased bases in six dimensions: The four most distant bases , 2011, Physical Review A.

[43]  I. Babenko Algebra, geometry, and topology of the substitution group of formal power series , 2013 .

[44]  A. J. Scott,et al.  SIC-POVMs: A new computer study , 2009 .

[45]  William O. Alltop,et al.  Complex sequences with low periodic correlations , 1980 .

[46]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.