A class of multiobjective linear programming models with random rough coefficients

In the present paper, we concentrate on dealing with a class of multiobjective programming problems with random rough coefficients. We first discuss how to turn a constrained model with random rough variables into crisp equivalent models. Then an interactive algorithm which is similar to the interactive fuzzy satisfying method is introduced to obtain the decision maker's satisfying solution. In addition, the technique of random rough simulation is applied to deal with general random rough objective functions and random rough constraints which are usually hard to convert into their crisp equivalents. Furthermore, combined with the techniques of random rough simulation, a genetic algorithm using the compromise approach is designed for solving a random rough multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.

[1]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[2]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[3]  Helmut Thiele,et al.  On axiomatic characterisations of crisp approximation operators , 2000, Inf. Sci..

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  M. McLure One Hundred Years from Today: Vilfredo Pareto, Manuale di Economia Politica con una Introduzione alla Scienza Sociale, Milan: Societa Editrice Libraria. 1906 , 2006 .

[6]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[7]  J. Manko,et al.  Bifuzzy probabilistic sets , 1995 .

[8]  Zafer Bingul,et al.  Adaptive genetic algorithms applied to dynamic multiobjective problems , 2007, Appl. Soft Comput..

[9]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[10]  Heinz Roland Weistroffer An interactive goal programming method for non-linear multiple-criteria decision-making problems , 1983, Comput. Oper. Res..

[11]  Hsien-Chung Wu,et al.  Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients , 2008, Math. Comput. Model..

[12]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[13]  R. Słowiński,et al.  Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis. , 1988, Medical informatics = Medecine et informatique.

[14]  Mitsuo Gen,et al.  Genetic Algorithms , 1999, Wiley Encyclopedia of Computer Science and Engineering.

[15]  Mitsuo Gen,et al.  Genetic Algorithms and Manufacturing Systems Design , 1996 .

[16]  W. Stadler A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960 , 1979 .

[17]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[18]  Baoding Liu,et al.  Birandom variables and birandom programming , 2007, Comput. Ind. Eng..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[21]  A. Miele,et al.  Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer , 1991 .

[22]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[23]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[24]  Salvatore Greco,et al.  Rough sets methodology for sorting problems in presence of multiple attributes and criteria , 2002, Eur. J. Oper. Res..

[25]  Abu S.M. Masud,et al.  Interactive Sequential Goal Programming , 1981 .

[26]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[27]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[28]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[29]  Jun Li,et al.  A class of multiobjective linear programming model with fuzzy random coefficients , 2006, Math. Comput. Model..

[30]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[31]  A. B. Terol A new approach for multiobjective decision making based on fuzzy distance minimization , 2008 .