Generating Sparse Stochastic Processes Using Matched Splines

We provide an algorithm to generate trajectories of sparse stochastic processes that are solutions of linear ordinary differential equations driven by Lévy white noises. A recent paper showed that these processes are limits in law of generalized compound-Poisson processes. Based on this result, we derive an off-the-grid algorithm that generates arbitrarily close approximations of the target process. Our method relies on a B-spline representation of generalized compound-Poisson processes. We illustrate numerically the validity of our approach.

[1]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[2]  Amos Ron,et al.  Factorization theorems for univariate splines on regular grids , 1990 .

[3]  Michael Unser,et al.  On the Linearity of Bayesian Interpolators for Non-Gaussian Continuous-Time AR(1) Processes , 2013, IEEE Transactions on Information Theory.

[4]  Michael Unser,et al.  An Introduction to Sparse Stochastic Processes , 2014 .

[5]  Thierry Blu,et al.  Cardinal exponential splines: part I - theory and filtering algorithms , 2005, IEEE Transactions on Signal Processing.

[6]  D. Mumford,et al.  Pattern Theory: The Stochastic Analysis of Real-World Signals , 2010 .

[7]  M. A. Kutay,et al.  On modeling biomedical ultrasound RF echoes using a power-law shot-noise model , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Sylvain Rubenthaler,et al.  Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process , 2003 .

[9]  Stephen M. Kogon,et al.  Signal modeling with self-similar α-stable processes: the fractional Levy stable motion model , 1996, IEEE Trans. Signal Process..

[10]  Michael Unser,et al.  Sparsity and Infinite Divisibility , 2014, IEEE Transactions on Information Theory.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[13]  Simon J. Godsill,et al.  Bayesian Inference for Continuous-Time Arma Models Driven by Non-Gaussian LÉVY Processes , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[14]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[15]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[16]  Michael Unser Cardinal exponential splines: part II - think analog, act digital , 2005, IEEE Transactions on Signal Processing.

[17]  Michael Unser,et al.  Sparse Stochastic Processes and Discretization of Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[18]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[19]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[20]  T. Kailath The innovations approach to detection and estimation theory , 1970 .

[21]  José R. Gallardo,et al.  Use of alpha-stable self-similar stochastic processes for modeling traffic in broadband networks , 2000, Perform. Evaluation.

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part I: Continuous-domain theory , 2011, ArXiv.

[24]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[25]  Michael Unser,et al.  Compressibility of Deterministic and Random Infinite Sequences , 2011, IEEE Transactions on Signal Processing.

[26]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[27]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[28]  J. Fageot,et al.  Unified View on Lévy White Noises: General Integrability Conditions and Applications to Linear SPDE , 2017, 1708.02500.

[29]  Michael Unser,et al.  Bayesian Estimation for Continuous-Time Sparse Stochastic Processes , 2012, IEEE Transactions on Signal Processing.

[30]  Robert Stelzer,et al.  Lévy-driven CARMA Processes , 2015 .

[31]  Michael Unser,et al.  Stochastic Models for Sparse and Piecewise-Smooth Signals , 2011, IEEE Transactions on Signal Processing.

[32]  A. Amini,et al.  On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling , 2014, Journal of Fourier Analysis and Applications.

[33]  Michael Unser,et al.  Gaussian and Sparse Processes Are Limits of Generalized Poisson Processes , 2017, Applied and Computational Harmonic Analysis.

[34]  Robert C. Dalang,et al.  L\'evy Processes and L\'evy White Noise as Tempered Distributions , 2015, 1509.05274.

[35]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part II: Discrete-domain theory , 2011, ArXiv.

[36]  Errol C. Caby An Introduction to Statistical Signal Processing , 2006, Technometrics.

[37]  Michael Unser,et al.  MMSE Estimation of Sparse Lévy Processes , 2013, IEEE Transactions on Signal Processing.

[38]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[39]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[40]  Fotios C. Harmantzis,et al.  Fractional Lévy motion and its application to network traffic modeling , 2002, Comput. Networks.

[41]  L. Bondesson On simulation from infinitely divisible distributions , 1982, Advances in Applied Probability.