Fast Extraction of BRDFs and Material Maps from Images

The bidirectional reflectance distribution function has a four dimensional parameter space and such high dimensionality makes it impractical to use it directly in hardware rendering. When a BRDF has no analytical representation, common solutions to overcome this problem include expressing it as a sum of basis functions or factorizing it into several functions of smaller dimensions. This thesis describes factorization extensions that significantly improve factor computation speed and eliminate drawbacks of previous techniques that overemphasize low sample values. The improved algorithm is used to calculate factorizations and material maps from colored images. The technique presented in this thesis allows interactive definition of arbitrary materials, and although this method is based on physical parameters, it can be also used for achieving a variety of nonphotorealistic effects.

[1]  Peter-Pike J. Sloan,et al.  The Lit Sphere: A Model for Capturing NPR Shading from Art , 2001, Graphics Interface.

[2]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[3]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[4]  Adam Finkelstein,et al.  WYSIWYG NPR: drawing strokes directly on 3D models , 2002, SIGGRAPH.

[5]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[6]  Hans-Peter Seidel,et al.  Towards interactive bump mapping with anisotropic shift-variant BRDFs , 2000, Workshop on Graphics Hardware.

[7]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[8]  HanrahanPat,et al.  Direct WYSIWYG painting and texturing on 3D shapes , 1990 .

[9]  Peter-Pike J. Sloan,et al.  Interactive technical illustration , 1999, SI3D.

[10]  Pontus Matstoms,et al.  Sparse QR factorization in MATLAB , 1994, TOMS.

[11]  Steven M. Seitz,et al.  Shape and materials by example: a photometric stereo approach , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Hans-Peter Seidel,et al.  Image-Based Reconstruction of Spatially Varying Materials , 2001 .

[13]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[14]  Alain Fournier,et al.  Separating Reflection Functions for Linear Radiosity , 1995, Rendering Techniques.

[15]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[16]  Radek Grzeszczuk,et al.  Nonlinear optimization framework for image-based modeling on programmable graphics hardware , 2003, ACM Trans. Graph..

[17]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[18]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[19]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[20]  Anthony A. Maciejewski,et al.  The Singular Value Decomposition: Computation and Applications to Robotics , 1989, Int. J. Robotics Res..

[21]  Hans-Peter Seidel,et al.  Realistic, hardware-accelerated shading and lighting , 1999, SIGGRAPH.

[22]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[23]  Baining Guo,et al.  Synthesis of bidirectional texture functions on arbitrary surfaces , 2002, SIGGRAPH.

[24]  David K. McAllister,et al.  Fast Matrix Multiplies Using Graphics Hardware , 2001, ACM/IEEE SC 2001 Conference (SC'01).