Minos and Restless transposon insertion mutagenesis of psychrotrophic fungus for red pigment synthesis adaptive to normal temperature

[1]  Xiangshan Zhou,et al.  Correction: Minos and Restless transposon insertion mutagenesis of psychrotrophic fungus for red pigment synthesis adaptive to normal temperature , 2023, Bioresources and Bioprocessing.

[2]  Xiangshan Zhou,et al.  Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature , 2021, Journal of industrial microbiology & biotechnology.

[3]  Z. Ivics,et al.  Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering , 2021, International journal of molecular sciences.

[4]  M. Madigan,et al.  Cultivation and characterization of snowbound microorganisms from the South Pole , 2021, Extremophiles.

[5]  Menghao Cai,et al.  Combinatorial strategies for production improvement of red pigments from Antarctic fungus Geomyces sp. , 2020, Journal of food science.

[6]  L. Zucconi,et al.  Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting , 2020, International journal of environmental research and public health.

[7]  E. Meyer,et al.  Fungal Community in Antarctic Soil Along the Retreating Collins Glacier (Fildes Peninsula, King George Island) , 2020, Microorganisms.

[8]  N. Najimudin,et al.  Correction to: A comparative transcriptomic analysis provides insights into the cold-adaptation mechanisms of a psychrophilic yeast, Glaciozyma antarctica PI12 , 2019, Polar Biology.

[9]  N. Najimudin,et al.  Correction to: A comparative transcriptomic analysis provides insights into the cold-adaptation mechanisms of a psychrophilic yeast, Glaciozyma antarctica PI12 , 2019, Polar Biology.

[10]  S. Duke,et al.  Fungi in Antarctica: Diversity, Ecology, Effects of Climate Change, and Bioprospection for Bioactive Compounds , 2019, Fungi of Antarctica.

[11]  H. Ferreira,et al.  Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri , 2018, Letters in applied microbiology.

[12]  H. Ferreira,et al.  Activity of Antarctic fungi extracts against phytopathogenic bacteria , 2018, Letters in applied microbiology.

[13]  C. Scazzocchio,et al.  Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans. , 2015, Fungal genetics and biology : FG & B.

[14]  U. Mortensen,et al.  A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi , 2015, PloS one.

[15]  C. Rosa,et al.  Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica , 2015, Polar Biology.

[16]  F. Kempken,et al.  Fungal Transposable Elements , 2015 .

[17]  Keith Roberts,et al.  Molecular Cloning A Laboratory Manual Fourth Edition , 2015 .

[18]  C. Rosa,et al.  Diversity Patterns, Ecology and Biological Activities of Fungal Communities Associated with the Endemic Macroalgae Across the Antarctic Peninsula , 2014, Microbial Ecology.

[19]  T. Zhu,et al.  Four New Chloro-Eremophilane Sesquiterpenes from an Antarctic Deep-Sea Derived Fungus, Penicillium sp. PR19N-1 , 2013, Marine drugs.

[20]  M. Tsuji,et al.  An Application of Wastewater Treatment in a Cold Environment and Stable Lipase Production of Antarctic Basidiomycetous Yeast Mrakia blollopis , 2013, PloS one.

[21]  A. Spradling,et al.  The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities , 2011, Genetics.

[22]  I. Pyykkő,et al.  Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool , 2011, Molecular and Cellular Biochemistry.

[23]  M. Muñoz-López,et al.  DNA Transposons: Nature and Applications in Genomics , 2010, Current genomics.

[24]  P. Carr,et al.  The Transposon impala Is Activated by Low Temperatures: Use of a Controlled Transposition System To Identify Genes Critical for Viability of Aspergillus fumigatus , 2010, Eukaryotic Cell.

[25]  S. Oehler,et al.  The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates , 2007, Genome Biology.

[26]  S. Oehler,et al.  Minos as a Genetic and Genomic Tool in Drosophila melanogaster , 2005, Genetics.

[27]  Yasunori Sasakura,et al.  Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  F. Grosveld,et al.  Transposition of the Drosophila hydei Minos transposon in the mouse germ line. , 2003, Genomics.

[29]  R. Afza,et al.  Physical and chemical mutagenesis. , 2003, Methods in molecular biology.

[30]  M. Daboussi,et al.  Impala, a transposon from Fusarium oxysporum, is active in the genome of Penicillium griseoroseum. , 2003, FEMS microbiology letters.

[31]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[32]  U. Kück,et al.  Ds-like restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. , 2002, Fungal genetics and biology : FG & B.

[33]  F. Grosveld,et al.  In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Scazzocchio,et al.  Heterologous transposition in Aspergillus nidulans , 2001, Molecular microbiology.

[35]  A. Hua-Van,et al.  Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. , 2001, Molecular plant-microbe interactions : MPMI.

[36]  D. Vassilatis,et al.  Genome‐wide insertional mutagenesis in human cells by the Drosophila mobile element Minos , 2000, EMBO reports.

[37]  U. Kück,et al.  Tagging of a nitrogen pathway-specific regulator gene in Tolypocladium inflatum by the transposon Restless , 2000, Molecular and General Genetics MGG.

[38]  F. Kempken,et al.  Methylation of the foreign transposon Restless in vegetative mycelia of Neurospora crassa , 2000, Current Genetics.

[39]  M. Daboussi,et al.  Specific expression of the Fusarium transposon Fot1 and effects on target gene transcription , 1999, Molecular microbiology.

[40]  U. Kück,et al.  Evidence for circular transposition derivatives from the fungal hAT-transposon Restless , 1998, Current Genetics.

[41]  G. Franz,et al.  Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. , 1991, Nucleic acids research.

[42]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .