Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation

[1]  Jinshui Zhang,et al.  Sol processing of conjugated carbon nitride powders for thin-film fabrication. , 2015, Angewandte Chemie.

[2]  Sung-hoon Ahn,et al.  Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation , 2015 .

[3]  Liang-Hong Guo,et al.  Switching Oxygen Reduction Pathway by Exfoliating Graphitic Carbon Nitride for Enhanced Photocatalytic Phenol Degradation. , 2015, The journal of physical chemistry letters.

[4]  Ling Zhang,et al.  Equilibrating the plasmonic and catalytic roles of metallic nanostructures in photocatalytic oxidation over Au-modified CeO2 , 2015 .

[5]  S. Chai,et al.  Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. , 2015, Chemical communications.

[6]  T. Nagao,et al.  Plasmonic Janus‐Composite Photocatalyst Comprising Au and C–TiO2 for Enhanced Aerobic Oxidation over a Broad Visible‐Light Range , 2014 .

[7]  Xinchen Wang,et al.  Helical graphitic carbon nitrides with photocatalytic and optical activities. , 2014, Angewandte Chemie.

[8]  N. Jana,et al.  Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. , 2014, ACS applied materials & interfaces.

[9]  Hongtao Yu,et al.  Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. , 2014, Environmental science & technology.

[10]  Hui Zhang,et al.  Polyamine-functionalized carbon nanodots: a novel chemiluminescence probe for selective detection of iron(iii) ions , 2014 .

[11]  H. Matsui,et al.  Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst , 2014 .

[12]  Mietek Jaroniec,et al.  Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. , 2014, Angewandte Chemie.

[13]  Shaohua Shen,et al.  In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production , 2014 .

[14]  Jinhua Ye,et al.  MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. , 2014, ACS nano.

[15]  Jiaguo Yu,et al.  g-C3N4-Based Photocatalysts for Hydrogen Generation. , 2014, The journal of physical chemistry letters.

[16]  Subhajyoti Samanta,et al.  Facile Synthesis of Au/g‐C3N4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visible‐Light Irradiation , 2014 .

[17]  Chao Xie,et al.  Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors. , 2014, ACS nano.

[18]  Porun Liu,et al.  Cross-linked g-C3 N4 /rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. , 2013, Small.

[19]  Xianzhi Fu,et al.  Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. , 2012, Angewandte Chemie.

[20]  Xinchen Wang,et al.  A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. , 2012, Angewandte Chemie.

[21]  M. Antonietti,et al.  Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis , 2012 .

[22]  F. Besenbacher,et al.  Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. , 2012, ACS nano.

[23]  H. Ming,et al.  Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light , 2012 .

[24]  K. Domen,et al.  Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. , 2012, Journal of the American Chemical Society.

[25]  Jae Sung Lee,et al.  Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. , 2012, Angewandte Chemie.

[26]  R. Amal,et al.  Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. , 2012, The journal of physical chemistry letters.

[27]  E. Giannelis,et al.  Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. , 2012, Journal of the American Chemical Society.

[28]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[29]  Anna Fischer,et al.  Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion , 2011 .

[30]  Rui Shi,et al.  Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 , 2011 .

[31]  Hui Zhang,et al.  Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. , 2011, Environmental science & technology.

[32]  Klaus Müllen,et al.  Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. , 2011, Angewandte Chemie.

[33]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[34]  Jinglin Liu,et al.  Water-soluble fluorescent carbon quantum dots and photocatalyst design. , 2010, Angewandte Chemie.

[35]  Xueping Gao,et al.  Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. , 2010, Angewandte Chemie.

[36]  Hongjian Yan,et al.  Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation , 2010 .

[37]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[38]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[39]  Ya‐Ping Sun,et al.  Carbon dots for multiphoton bioimaging. , 2007, Journal of the American Chemical Society.

[40]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[41]  X. Jiang,et al.  Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution. , 2005, Environmental science & technology.

[42]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[43]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[44]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[45]  T. Ishizuka,et al.  Quantitative Analysis of Powdery Sample by Diffuse Reflectance Infrared Fourier Transform Spectrometry: Determination of the α-Component in Silicon Nitride , 1991 .