Simulation of absorption of femtosecond laser pulses in solid-density copper

Abstract We present a simulation of absorption of femtosecond laser pulses by a copper target. The modeling involved thermodynamic functions calculated by using a first-principles full-potential linear muffin-tin orbital method and chemical-picture-based model of dense plasma utilizing a superconfiguration approach. The results of the simulation are compared to experimental and other theoretical data. The role of the electron-ion energy exchange is analyzed and further work on detailed improvement of the presented theoretical model is discussed.

[1]  N. Smirnov,et al.  Structural transitions in indium under high pressure : Ab initio electronic structure calculations , 2006 .

[2]  Price,et al.  Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV. , 1995, Physical review letters.

[3]  D. G. Hummer,et al.  The MHD Equation of State with Post-Holtsmark Microfield Distributions , 1999, astro-ph/9901360.

[4]  Dimitri Mihalas,et al.  The equation of state for stellar envelopes. I - An occupation probability formalism for the truncation of internal partition functions , 1988 .

[5]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[6]  P. A. Loboda,et al.  Chemical‐Picture‐Based Modeling of Thermodynamic Properties of Dense Multicharged‐Ion Plasmas Using the Superconfiguration Approach , 2009 .

[7]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[8]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[9]  M. Desjarlais,et al.  Electrical conductivity and equation-of-state study of warm dense copper: Measurements and quantum molecular dynamics calculations , 2005 .

[10]  Cheng,et al.  Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors. , 1990, Physical review letters.

[11]  D. Liberman Inferno: A better model of atoms in dense plasmas , 1982 .

[12]  Savrasov,et al.  Electron-phonon interactions and related physical properties of metals from linear-response theory. , 1996, Physical review. B, Condensed matter.

[13]  Kwang S. Kim,et al.  Extended Drude model analysis of noble metals , 2007 .

[14]  Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[16]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[17]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[18]  A. Rajagopal,et al.  Density functional formalism at finite temperatures with some applications , 1982 .

[19]  R. J. Dwayne Miller,et al.  The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold , 2009, Science.

[20]  J. Janak,et al.  Calculations of the superconducting properties of 32 metals with Z ≤ 49 , 1977 .

[21]  Z. Zinamon,et al.  Intraband and interband absorption of femtosecond laser pulses in copper , 2005 .

[22]  Baerbel Rethfeld,et al.  Theory of ultrashort laser pulse interaction with a metal , 1997, Other Conferences.

[23]  Pavel R. Levashov,et al.  Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses , 2007 .

[24]  Hitoki Yoneda,et al.  Short-pulse lasers and electron dynamics in warm dense matter , 2006 .

[25]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[26]  J. Meyer-ter-Vehn,et al.  Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals , 2006 .

[27]  Werner Ebeling,et al.  Thermophysical properties of hot dense plasmas , 1991 .

[28]  W. E. Lawrence,et al.  Intraband optical conductivity sigma/omega,T/ of Cu, Ag, and Au - Contribution from electron-electron scattering , 1981 .

[29]  G. Chabrier,et al.  Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Goldstein,et al.  Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.

[31]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[32]  Leonid V. Zhigilei,et al.  Metal ablation by picosecond laser pulses: A hybrid simulation , 2002 .

[33]  J. Friedel,et al.  Solid state physics. Volume 5: Edited by F. Seitz and D. Turnbull. Academic Press, Inc., New York, 1957. Vol. 5:455 pp., $11.00. , 1958 .

[34]  V. Novikov,et al.  Calculations of the equation of state by the Liberman mode , 2011 .

[35]  R. More,et al.  Ultra-short pulse laser pump-probe experiments for investigation of warm dense plasmas , 2006 .

[36]  Shalom Eliezer,et al.  BOOK REVIEW: The Interaction of High-Power Lasers With Plasmas , 2002 .

[37]  J. Meyer-ter-Vehn,et al.  Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  S. Eliezer,et al.  Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  C. Kittel Introduction to solid state physics , 1954 .

[40]  P. Levashov,et al.  Femtosecond optical diagnostics and hydrodynamic simulation of Ag plasma created by laser irradiation of a solid target , 2008 .

[41]  Gilbert W. Collins,et al.  Dielectric function of warm dense gold , 2007 .

[42]  Robert Fedosejevs,et al.  Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets , 2009 .

[43]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[44]  Norris,et al.  Time-resolved observation of electron-phonon relaxation in copper. , 1987, Physical Review Letters.

[45]  Yu. V. Petrov,et al.  Thermal conductivity of metals with hot electrons , 2010 .

[46]  Paul T. Springer,et al.  Interferometric investigation of femtosecond laser-heated expanded states , 2001 .

[47]  Savrasov,et al.  Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. , 1996, Physical review. B, Condensed matter.

[48]  W. Rozmus,et al.  Electron transport and permittivity in a plasma with an arbitrary ionic charge , 2008 .

[49]  G Zérah,et al.  Effect of intense laser irradiation on the lattice stability of semiconductors and metals. , 2006, Physical review letters.

[50]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[51]  O. P. Shemyakin,et al.  Pseudopotential and full-electron DFT calculations of thermodynamic properties of electrons in metals and semiempirical equations of state , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[53]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[54]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .