The origin and migration of cortical neurones: new vistas

The principal neuronal types of the cerebral cortex are the excitatory pyramidal cells, which project to distant targets, and the inhibitory nonpyramidal cells, which are the cortical interneurones. This article reviews evidence suggesting that these two neuronal types are generated in distinct proliferative zones. Pyramidal cells are derived from the neuroepithelium in the cortical ventricular zone, and use the processes of radial glia in order to migrate and take their positions in the cortex in an 'inside-out' sequence. Relatively few nonpyramidal cells are generated in the cortical neuroepithelium: the majority is derived from the ganglionic eminence of the ventral telencephalon. These nonpyramidal neurones use tangential migratory paths to reach the cortex, probably travelling along axonal bundles of the developing corticofugal fibre system.

[1]  N. Birdsall,et al.  Muscarinic receptor subtypes. , 1990, Annual review of pharmacology and toxicology.

[2]  T. Bonner,et al.  Identification of a family of muscarinic acetylcholine receptor genes. , 1987, Science.

[3]  S. Mcconnell,et al.  Tangential migration of neurons in the developing cerebral cortex. , 1995, Development.

[4]  Y. Rao,et al.  The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. , 1999, Developmental biology.

[5]  C. Métin,et al.  The Ganglionic Eminence May Be an Intermediate Target for Corticofugal and Thalamocortical Axons , 1996, The Journal of Neuroscience.

[6]  A Fairén,et al.  Cortical Cells That Migrate Beyond Area Boundaries: Characterization of an Early Neuronal Population in the Lower Intermediate Zone of Prenatal Rats , 1994, The European journal of neuroscience.

[7]  C. Yamamoto,et al.  Suppressing action of cholinergic agents on synaptic transmissions in the corpus striatum of rats , 1978, Experimental Neurology.

[8]  C. Barnstable,et al.  Molecular determinants of GABAergic local-circuit neurons in the visual cortex , 1989, Trends in Neurosciences.

[9]  T. Curran,et al.  Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. , 1998, Development.

[10]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[11]  A. Lieberman,et al.  Neurons in layer I of the developing occipital cortex of the rat , 1977, The Journal of comparative neurology.

[12]  J. Parnavelas,et al.  Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex , 1983, Journal of neurocytology.

[13]  A. Goffinet,et al.  The reeler mouse as a model of brain development. , 1998, Advances in anatomy, embryology, and cell biology.

[14]  William B Dobyns,et al.  Mutations in filamin 1 Prevent Migration of Cerebral Cortical Neurons in Human Periventricular Heterotopia , 1998, Neuron.

[15]  J. Parnavelas,et al.  Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  G. Bernardi,et al.  The action of acetylcholine and L-glutamic acid on rat caudate neurons , 1976, Brain Research.

[17]  A. Goffinet,et al.  Brain Development in Normal and reeler Mice: the Phenotype , 1998 .

[18]  M. Mckinney,et al.  Muscarinic M2 receptor-mediated cyclic AMP reduction in mechanically dissociated rat cortex , 1988, Brain Research.

[19]  J. Parnavelas,et al.  Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[21]  A. Brun The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. , 1965, Acta pathologica et microbiologica Scandinavica.

[22]  C. Zheng,et al.  CNS Gene Encoding Astrotactin, Which Supports Neuronal Migration Along Glial Fibers , 1996, Science.

[23]  L. Puelles,et al.  DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  M. Mione,et al.  Cell Fate Specification and Symmetrical/Asymmetrical Divisions in the Developing Cerebral Cortex , 1997, The Journal of Neuroscience.

[25]  Y. Rao,et al.  Cellular and Molecular Guidance of GABAergic Neuronal Migration from an Extracortical Origin to the Neocortex , 1999, Neuron.

[26]  P. Sharpe,et al.  Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. , 1998, Development.

[27]  M. Frotscher Dual role of Cajal-Retzius cells and reelin in cortical development , 1997, Cell and Tissue Research.

[28]  G. Meyer,et al.  Developmental changes in layer I of the human neocortex during prenatal life: A DiI‐tracing and AChE and NADPH‐d histochemistry study , 1993, The Journal of comparative neurology.

[29]  C. Goodman,et al.  Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance , 1999, Cell.

[30]  J G Parnavelas,et al.  Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. , 1991, Cerebral cortex.

[31]  G. Meyer,et al.  Prenatal development of reelin‐immunoreactive neurons in the human neocortex , 1998, The Journal of comparative neurology.

[32]  A. L. Holden,et al.  THE CENTRAL VISUAL PATHWAYS , 1977 .

[33]  C. Métin,et al.  A role for netrin-1 in the guidance of cortical efferents. , 1997, Development.

[34]  D. Surmeier,et al.  Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  T. Curran,et al.  A protein related to extracellular matrix proteins deleted in the mouse mutant reeler , 1995, Nature.

[36]  C. Cepko,et al.  Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. , 1992, Science.

[37]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[38]  W. Krieg Connections of the cerebral cortex , 1963 .

[39]  Sophie Dupuis,et al.  Directional guidance of neuronal migration in the olfactory system by the protein Slit , 1999, Nature.

[40]  N. Tamamaki,et al.  Origin and Route of Tangentially Migrating Neurons in the Developing Neocortical Intermediate Zone , 1997, The Journal of Neuroscience.

[41]  A. W. Rogers,et al.  The migration of neuroblasts in the developing cerebral cortex. , 1965, Journal of anatomy.

[42]  A. Fairén,et al.  Cellular mosaics in the rat marginal zone define an early neocortical territorialization. , 2000, Cerebral cortex.

[43]  J. Rubenstein,et al.  Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt- 3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[45]  L. Cubeddu,et al.  Pharmacologic characterization and functional role of muscarinic autoreceptors in the rabbit striatum. , 1987, The Journal of pharmacology and experimental therapeutics.

[46]  B. Reese,et al.  Separate Progenitors for Radial and Tangential Cell Dispersion during Development of the Cerebral Neocortex , 1998, Neuron.

[47]  F. Valverde,et al.  Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat , 1996, The Journal of Neuroscience.

[48]  A. Fairén,et al.  Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex , 1998, The Journal of comparative neurology.

[49]  John Shelton,et al.  Reeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice Lacking the VLDL Receptor and ApoE Receptor 2 , 1999, Cell.

[50]  V. Caviness,et al.  The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. , 1991, Cerebral cortex.

[51]  S. Anderson,et al.  The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex. , 2000, Novartis Foundation symposium.

[52]  A. Brun The subpial granular layer of the foetal cerebral cortex in man. , 1965, Acta pathologica et microbiologica Scandinavica.

[53]  T. Bonner The molecular basis of muscarinic receptor diversity , 1989, Trends in Neurosciences.

[54]  J. Szentágothai Synaptology of the Visual Cortex , 1973 .

[55]  J. García-Verdugo,et al.  Young neurons from medial ganglionic eminence disperse in adult and embryonic brain , 1999, Nature Neuroscience.

[56]  H. Supèr,et al.  The functions of the preplate in development and evolution of the neocortex and hippocampus , 1998, Brain Research Reviews.

[57]  Gregory Bock,et al.  Evolutionary Developmental Biology of the Cerebral Cortex , 2000 .

[58]  J. D. del Río,et al.  Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. , 1995, Cerebral cortex.

[59]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  O. Swezy THE ALBINO RAT. , 1928, Science.

[61]  B. Kolb,et al.  The Cerebral cortex of the rat , 1990 .

[62]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[63]  M. Seike,et al.  The reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons , 1995, Neuron.

[64]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[65]  A. Lavdas,et al.  The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex , 1999, The Journal of Neuroscience.

[66]  P. Calabresi,et al.  Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation , 1998, The European journal of neuroscience.

[67]  M. Frotscher Cajal—Retzius cells, Reelin, and the formation of layers , 1998, Current Opinion in Neurobiology.

[68]  M. Sanders Handbook of Sensory Physiology , 1975 .