Optimum geometry selection for sensor fusion

A relative sensors-to-target geometry measure-of-merit (MOM), based on the Geometric Dilution of Precision (GDOP) measure, is developed. The method of maximum likelihood estimation is introduced for the solution of the position location problem. A linearized measurement model-based error sensitivity analysis is used to derive an expression for the GDOP MOM. The GDOP MOM relates the sensor measurement errors to the target position errors as a function of sensors-to-target geometry. In order to illustrate the efficacy of GDOP MOM for fusion systems, GDOP functional relationships are computed for bearing-only measuring sensors-to-target geometries. The minimum GDOP and associated specific target-to-sensors geometries are computed and illustrated for both two and three bearing-only measuring sensors. Two and three-dimensional plots of relative error contours provide a geometric insight to sensor placement as a function of geometry induced error dilution. The results can be used to select preferred target- to-sensor(s) geometries for M sensors in this application. The GDOP MOM is general and is readily extendable to other measurement-based sensors and fusion architectures.

[1]  Don Torrieri,et al.  Statistical Theory of Passive Location Systems , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[2]  William G. Schmidt,et al.  A Ground Simulation of a Satellite Navigation System , 1976 .

[3]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .