Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone

[1]  T. Shimamoto,et al.  Mechanical Behavior of Halite and Calcite Shear Zones from Brittle to Fully-Plastic Deformation and A Revised Fault Model , 2018 .

[2]  T. Mitchell,et al.  The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates , 2017 .

[3]  Kelin Wang,et al.  Rheological separation of the megathrust seismogenic zone and episodic tremor and slip , 2017, Nature.

[4]  C. Spiers,et al.  Shear localization in a mature mylonitic rock analog during fast slip , 2017 .

[5]  A. Niemeijer,et al.  Friction properties and deformation mechanisms of halite(-mica) gouges from low to high sliding velocities , 2017 .

[6]  Jianye Chen,et al.  Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model , 2016 .

[7]  R. Clayton,et al.  Localized seismic deformation in the upper mantle revealed by dense seismic arrays , 2016, Science.

[8]  Lei Zhang,et al.  Frictional properties of phyllosilicate‐rich mylonite and conditions for the brittle‐ductile transition , 2015 .

[9]  A. Niemeijer,et al.  Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600°C: Implications for natural faults in limestones , 2015 .

[10]  T. Mitchell,et al.  Crystallographic preferred orientations may develop in nanocrystalline materials on fault planes due to surface energy interactions , 2015 .

[11]  Jianye Chen,et al.  Interseismic re-strengthening and stabilization of carbonate faults by "non-Dieterich" healing under hydrothermal conditions , 2015 .

[12]  Steven A. Smith,et al.  Strain localization and the onset of dynamic weakening in calcite fault gouge , 2015 .

[13]  C. Spiers,et al.  Superplastic nanofibrous slip zones control seismogenic fault friction , 2014, Science.

[14]  H. Noda,et al.  A friction to flow constitutive law and its application to a 2‐D modeling of earthquakes , 2014 .

[15]  A. Niemeijer,et al.  Frictional Properties and Microstructure of Calcite-Rich Fault Gouges Sheared at Sub-Seismic Sliding Velocities , 2014, Pure and Applied Geophysics.

[16]  Xianghui Xiao,et al.  Creep cavitation bands control porosity and fluid flow in lower crustal shear zones , 2014 .

[17]  C. Spiers,et al.  Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults , 2013 .

[18]  C. Spiers,et al.  A microphysical model for fault gouge friction applied to subduction megathrusts , 2013 .

[19]  Y. Fialko,et al.  Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical simulations , 2013 .

[20]  J. White Paradoxical pseudotachylyte – Fault melt outside the seismogenic zone , 2012 .

[21]  D. Kohlstedt,et al.  Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic‐preferred orientation , 2011 .

[22]  M. Cocco,et al.  Fault lubrication during earthquakes , 2011, Nature.

[23]  T. Tullis,et al.  Porosity and particle shape changes leading to shear localization in small-displacement faults , 2010 .

[24]  H. Noda,et al.  A rate‐ and state‐dependent ductile flow law of polycrystalline halite under large shear strain and implications for transition to brittle deformation , 2010 .

[25]  F. De Carlo,et al.  Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones , 2009, Nature.

[26]  G. D. Toro,et al.  Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies. , 2008 .

[27]  Erik Rybacki,et al.  High‐strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust , 2008 .

[28]  A. Niemeijer,et al.  A microphysical model for strong velocity weakening in phyllosilicate‐bearing fault gouges , 2006 .

[29]  A. Niemeijer,et al.  Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge , 2006 .

[30]  J. Rice Heating and weakening of faults during earthquake slip , 2006 .

[31]  Review and Future Directions , 2006, In Search of Consistency: Ethics and Animals.

[32]  Wenxiong Huang,et al.  A study of localized deformation pattern in granular media , 2004 .

[33]  K. Fujimoto,et al.  Ductile fracture of fine-grained plagioclase in the brittle–plastic transition regime: implication for earthquake source nucleation , 2004 .

[34]  B. Evans,et al.  The effect of dissolved magnesium on diffusion creep in calcite , 2003 .

[35]  Nadia Lapusta,et al.  Nucleation and early seismic propagation of small and large events in a crustal earthquake model , 2003 .

[36]  J. D. Bresser On the mechanism of dislocation creep of calcite at high temperature: Inferences from experimentally measured pressure sensitivity and strain rate sensitivity of flow stress , 2002 .

[37]  C. Spiers,et al.  Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles , 2002 .

[38]  B. Evans,et al.  A few remarks on the kinetics of static grain growth in rocks , 2001 .

[39]  N. Shigematsu,et al.  Ultramylonite bands derived from cataclasite and pseudotachylyte in granites, northeast Japan , 2000 .

[40]  Kiyoshi Ito,et al.  Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes , 1999 .

[41]  M. Handy,et al.  Frictional–viscous flow in mylonite with varied bimineralic composition and its effect on lithospheric strength , 1999 .

[42]  T. Shimamoto,et al.  The strength profile for bimineralic shear zones: an insight from high-temperature shearing experiments on calcite–halite mixtures , 1998 .

[43]  C. Scholz Earthquakes and friction laws , 1998, Nature.

[44]  T. Fliervoet,et al.  Evidence for dominant grain-boundary sliding deformation in greenschist- and amphibolite-grade polymineralic ultramylonites from the Redbank Deformed Zone, Central Australia , 1997 .

[45]  S. Covey-crump The normal grain growth behaviour of nominally pure calcitic aggregates , 1997 .

[46]  F. Chester A rheologic model for wet crust applied to strike‐slip faults , 1995 .

[47]  James D. Byerlee,et al.  Frictional slip of granite at hydrothermal conditions , 1995 .

[48]  Brian Kilgore,et al.  Scaling of the critical slip distance for seismic faulting with shear strain in fault zones , 1993, Nature.

[49]  J. Weeks,et al.  Two‐mechanism model for frictional sliding of serpentinite , 1992 .

[50]  Frederick M. Chester,et al.  Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions , 1992 .

[51]  김기석 악관절 장애의 기여요인(Contributing Factors) , 1991 .

[52]  Christopher H. Scholz,et al.  The brittle-plastic transition and the depth of seismic faulting , 1988 .

[53]  T. Shimamoto Transition Between Frictional Slip and Ductile Flow for Halite Shear Zones at Room Temperature , 1986, Science.

[54]  R. Sibson Roughness at the base of the seismogenic zone: Contributing factors , 1984 .

[55]  R. Sibson Continental fault structure and the shallow earthquake source , 1983, Journal of the Geological Society.

[56]  A. Ruina,et al.  Stability of Steady Frictional Slipping , 1983 .

[57]  R. Sibson Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States , 1982 .

[58]  Richard H. Sibson,et al.  Fault rocks and fault mechanisms , 1977, Journal of the Geological Society.

[59]  S. D. Hartog,et al.  Subduction megathrust creep governed by pressure solution and frictional-viscous flow , 2017 .

[60]  C. Collettini,et al.  Frictional-viscous flow, seismicity and the geology of weak faults: a review and future directions , 2008 .

[61]  B. Evans,et al.  On estimating the strength of calcite rocks under natural conditions , 2002, Geological Society, London, Special Publications.

[62]  M. Stewart,et al.  The structure and rheological evolution of reactivated continental fault zones: a review and case study , 2001, Geological Society, London, Special Publications.

[63]  E. Rutter,et al.  Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks , 1990, Geological Society, London, Special Publications.

[64]  T. Shimamoto The origin of S-C mylonites and a new fault-zone model , 1989 .

[65]  B. Hobbs,et al.  Earthquakes in the ductile regime? , 1986 .

[66]  R. Sibson Transient discontinuities in ductile shear zones , 1980 .